Python Library Reference

Guido van Rossum
Dept. CST, CWI, Kruislaan 413
1098 SJ Amsterdam, The Netherlands
E-mail: guido@cwi.nl

July 29, 1993

Abstract

This document describes the built-in types, exceptions and functions and the standard mod-
ules that come with the Python system. It assumes basic knowledge about the Python
language. For an informal introduction to the language, see the Python Tutorial. The Python
Reference Manual gives a more formal definition of the language.

Contents

1 Introduction 1
2 Built-in Types, Exceptions and Functions 2
2.1 Built-in Types e 2
2.1.1 Truth Value Testing, 2

2.1.2 Boolean Operations, 3

2.1.3 Comparisons u e e e e e e 3

2.1.4 Numeric Types 0 o e e 4

2.1.5 Sequence Types. o Lo 5

2.1.6 Mapping Types o o o 7

2.1.7 Other Built-in Types 7

2.1.8 Special Attributes Lo 10

2.2 Built-in Exceptions 10
2.3 Built-in Functions e 12

3 Built-in Modules 18
3.1 Built-in Module sys 18
3.2 Built-in Module __main__ 20
3.3 Built-in Modulemath. Lo 20
3.4 Built-in Module time L 20
3.5 Built-in Moduleregex o o oo 22
3.6 Built-in Module marshal 24
3.7 Built-in module struct Lo Lo 25
3.8 Built-in module array L 26

4 Standard Modules 28
4.1 Standard Module string 0o oo 28
4.2 Standard Modulerand L 30
4.3 Standard Module whrandomo 30
4.4 Standard Module regsub L 30
4.5 Standard Moduleos L 31

5 MOST OPERATING SYSTEMS 33
5.1 Built-in Module posix 33
5.2 Standard Module posixpatho 36
5.3 Standard Module getopt L L oo 38

6 UNIX ONLY

6.1 Built-in Module pwdo
6.2 Built-in Modulegrpo o
6.3 Built-in Module socket

6.3.1 Socket Object Methods

6.3.2 Example. e
6.4 Built-in module select e
6.5 Built-in Moduledbm
6.6 Built-in Module thread

7 AMOEBA ONLY
7.1 Built-in Module amoeba
7.1.1 Capability Operations i

8 MACINTOSH ONLY
8.1 Built-in modulemac
8.2 Standard modulemacpath L L L

9 STDWIN ONLY
9.1 Built-in Module stdwin e
9.1.1 Functions Defined in Module stdwin
9.1.2 Window Object Methods
9.1.3 Drawing Object Methods
9.1.4 Menu Object Methods
9.1.5 Bitmap Object Methods
9.1.6 Text-edit Object Methods
9.1.7 Example.
9.2 Standard Module stdwinevents
9.3 Standard Module rect

10 SGI MACHINES ONLY

10.1 Built-in Module al e e
10.2 Standard Module AL e
10.3 Built-in Module audio L
10.4 Built-in Module g1
10.5 Built-in Module fm e
10.6 Standard Modules GL and DEVICE oo
10.7 Built-in Module £1 e

10.7.1 Functions defined in module £1

10.7.2 Form object methods and data attributes

10.7.3 FORMS object methods and data attributes
10.8 Standard Module FL
10.9 Standard Module f1p
10.10Standard Module panelo
10.11Standard Module panelparser
10.12Built-in Module pnl L
10.13Built-in Module jpeg.

ii

39
39
39
40
41
43
44
44
45

47
47
48

49
49
49

50
50
50
54
55
57
57
58
59
59
60

10.14Built-in module imgfile oL oL
10.15Built-in module imageop Lo

11 SUN SPARC MACHINES ONLY
11.1 Built-in module sunaudiodev
11.1.1 Audio device object methods

12 AUDIO TOOLS
12.1 Built-in module audioop Lo

13 CRYPTOGRAPHIC EXTENSIONS
13.1 Built-in modulempz
13.2 Built-in modulemd5 L

iii

80
80
80

82
82

Chapter 1

Introduction

The Python library consists of three parts, with different levels of integration with the in-
terpreter. Closest to the interpreter are built-in types, exceptions and functions. Next are
built-in modules, which are written in C and linked statically with the interpreter. Finally
there are standard modules that are implemented entirely in Python, but are always available.
For efficiency, some standard modules may become built-in modules in future versions of the
interpreter.

Chapter 2

Built-in Types, Exceptions and
Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table
is searched last, so local and global user-defined names can override built-in names. Built-in
types have no names but are created easily by constructing an object of the desired type (e.g.,
using a literal) and applying the built-in function type () to it. They are described together
here for easy reference.!

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These
are the numeric types, sequence types, and several others, including types themselves. There
is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be
compared, tested for truth value, and converted to a string (with the ‘... ¢ notation). The
latter conversion is implicitly used when an object is written by the print statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand
of the Boolean operations below. The following values are false:

e None

e zero of any numeric type, e.g., 0, OL, 0.0.

e any empty sequence, e.g., >’, O, [].

e any empty mapping, e.g., {}.

!Some descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a
future version of this document.

All other values are true — so objects of many types are always true.

2.1.2 Boolean Operations

These are the Boolean operations:

Operation | Result Notes
z or y | if z is false, then y, else z | (1)
z and y | if z is false, then z, else y | (1)

not if z is false, then 1, else 0O

Notes:

(1) These only evaluate their second argument if needed for their outcome.

2.1.3 Comparisons

Comparison operations are supported by all objects:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
= not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between ABC
and C! :-)

Objects of different types, except different numeric types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a con-
sistent result). Furthermore, some types (e.g., windows) support only a degenerate notion of
comparison where any two objects of that type are unequal. Again, such objects are ordered
arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type

names; objects of the same types that don’t support proper comparison are ordered by their
address.)

Two more operations with the same syntactic priority, in and not in, are supported only by
sequence types (below).

2.1.4 Numeric Types

There are three numeric types: plain integers, long integers, and floating point numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them
at least 32 bits of precision. Long integers have unlimited precision. Floating point numbers
are implemented using double in C. All bets on their precision are off unless you happen to
know the machine you are working with.

Numbers are created by numeric literals or as the result of built-in functions and operators.
Unadorned integer literals (including hex and octal numbers) yield plain integers. Integer
literals with an ‘L’ or ‘1’ suffix yield long integers (‘L’ is preferred because 11 looks too much
like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating
point numbers.

Python fully supports mixed arithmetic: when an binary arithmetic operator has operands of
different numeric types, the operand with the “smaller” type is converted to that of the other,
where plain integer is smaller than long integer is smaller than floating point. Comparisons
between numbers of mixed type use the same rule.? The functions int (), long() and float ()
can be used to coerce numbers to a specific type.

All numeric types support the following operations:

Operation Result Notes
abs(z) absolute value of z
int (z) z converted to integer (1)
long(z) z converted to long integer (1)
float(z) z converted to floating point
-z x negated
+x x unchanged

sum of z and y
difference of z and y
product of z and y

8 8 8 8 8
*
SIS

/ quotient of z and y (2)
% remainder of z / y
divmod(z, y) | the pair (z / vy, = % y) (3)

pow(z,) z to the power y

Notes:

(1) Conversion from floating point to (long or plain) integer may round or truncate as in C;
see functions floor and ceil in module math for well-defined conversions.

(2) For (plain or long) integer division, the result is an integer; it always truncates towards
zero.

(3) See the section on built-in functions for an exact definition.

2As a consequence, the list [1, 2] is considered equal to [1.0, 2.01, and similar for tuples.

Bit-string Operations on Integer Types.

Plain and long integer types support additional operations that make sense only for bit-strings.
Negative numbers are treated as their 2’s complement value:

Operation | Result Notes
"z the bits of z inverted
z "y bitwise exclusive or of z and y
T &y bitwise and of z and y
z |y bitwise or of z and y
x << n | z shifted left by n bits
z >> n | z shifted right by n bits

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples. Strings literals are written in single
quotes: ’xyzzy’. Lists are constructed with square brackets, separating items with commas:
[a, b, c]. Tuples are constructed by the comma operator (not within square brackets), with
or without enclosing parentheses, but an empty tuple must have the enclosing parentheses,
e.g., a, b, cor (). A single item tuple must have a trailing comma, e.g., (d,).

Sequence types support the following operations (s and ¢ are sequences of the same type; n,
i and j are integers):

Operation Result Notes

len(s) length of s
min(s) smallest item of s
max (s) largest item of s
z in s 1 if an item of s is equal to z, else O

z not in s | O if an item of s is equal to z, else 1
s+t the concatenation of s and ¢

s * n, n * s | n copies of s concatenated
s[i] i’th item of s, origin 0 (1)

sli:g] slice of s from i to j (1), (2)

Notes:

(1) If 4 or j is negative, the index is relative to the end of the string, i.e., len(s) + i or
len(s) + j is substituted. But note that -0 is still 0.

(2) The slice of s from i to j is defined as the sequence of items with index k such that
i <= k < j. If ¢ or j is greater than len(s), use len(s). If i is omitted, use 0. If j is
omitted, use len(s). If ¢ is greater than or equal to j, the slice is empty.

More String Operations.

String objects have one unique built-in operation: the % operator (modulo) with a string
left argument interprets this string as a C sprintf format string to be applied to the right
argument, and returns the string resulting from this formatting operation.

Unless the format string requires exactly one argument, the right argument should be a tuple
of the correct size. The following format characters are understood: %, c, s, i, d, u, o, x, X,
e, E, f, g, G. Width and precision may be a * to specify that an integer argument specifies
the actual width or precision. The flag characters -, +, blank, # and 0 are understood. The
size specifiers h, |1 or L may be present but are ignored. The ANSI features %p and %n are not
supported. Since Python strings have an explicit length, %s conversions don’t assume that
>0’ is the end of the string.

For safety reasons, huge floating point precisions are truncated; %f conversions for huge
numbers are replaced by %g conversions. All other errors raise exceptions.

Additional string operations are defined in standard module string and in built-in module
regex.

Mutable Sequence Types.

List objects support additional operations that allow in-place modification of the object.
These operations would be supported by other mutable sequence types (when added to the
language) as well. Strings and tuples are immutable sequence types and such objects cannot
be modified once created. The following operations are defined on mutable sequence types
(where z is an arbitrary object):

Operation Result Notes
sli] = = item 4 of s is replaced by z
sli=jl =t slice of s from i to j is replaced by ¢
del s[i:7] same as s[i:7] = []
s .append () same as s[len(z):len(z)] = [z]
s.count (z) return number of ¢’s for which s[i] ==
$.index(z) return smallest 7 such that s[i] == =z (1)
s.insert(i, z) | same as s[7:7] = [z]
s.remove () same as del s[s.index(z)] (1)
s.reverse() reverses the items of s in place
s.sort () permutes the items of s to satisfy s[i] <= s[j], fori < j | (2)
Notes:

(1) Raises an exception when z is not found in s.

(2) The sort() method takes an optional argument specifying a comparison function of two
arguments (list items) which should return -1, 0 or 1 depending on whether the first
argument is considered smaller than, equal to, or larger than the second argument. Note
that this slows the sorting process down considerably; e.g. to sort an array in reverse

order it is much faster to use calls to sort() and reverse() than to use sort() with
a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are
mutable objects. There is currently only one mapping type, the dictionary. A dictionary’s
keys are almost arbitrary values. The only types of values not acceptable as keys are values
containing lists or dictionaries or other mutable types that are compared by value rather than
by object identity. Numeric types used for keys obey the normal rules for numeric comparison:
if two numbers compare equal (e.g. 1 and 1.0) then they can be used interchangeably to index
the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: wvalue pairs within braces,
for example: {’jack’: 4098, ’sjoerd: 4127} or {4098: ’jack’, 4127: ’sjoerd}.

The following operations are defined on mappings (where « is a mapping, k is a key and z is
an arbitrary object):

Operation Result Notes
len(a) the number of items in a
a k] the item of a with key k (1)
alk]l = z set al[k] to x
del al[k] remove a [k] from a (1)
a.items() a copy of a’s list of (key, item) pairs | (2)
a.keys() a copy of a’s list of keys (2)
a.values() | a copy of a’s list of values (2)
a.has_key(k) | 1if a has a key k, else O

Notes:

(1) Raises an exception if k is not in the map.

(2) Keys and values are listed in random order, but at any moment the ordering of the
keys(), values() and items () lists is the consistent with each other.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or
two operations.

Modules.

The only special operation on a module is attribute access: m.name, where m is a module
and name accesses a name defined in m’s symbol table. Module attributes can be assigned
to. (Note that the import statement is not, strictly spoken, an operation on a module

object; import foo does not require a module object named foo to exist, rather it requires
an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the mod-
ule’s symbol table. Modifying this dictionary will actually change the module’s symbol ta-
ble, but direct assignment to the __dict__ attribute is not possible (i.e., you can write
m.__dict__[’a’] = 1, which defines m.a to be 1, but you can’t write m.__dict__ = {}.

Modules are written like this: <module ’sys’>.

Classes and Class Instances.

(See the Python Reference Manual for these.)

Functions.

Function objects are created by function definitions. The only operation on a function object
is to call it: funcCargument-list).

There are really two flavors of function objects: built-in functions and user-defined functions.
Both support the same operation (to call the function), but the implementation is different,
hence the different object types.

The implementation adds two special read-only attributes: f.func_code is a function’s code
object (see below) and f.func_globals is the dictionary used as the function’s global name
space (this is the same as m.__dict__ where m is the module in which the function f was
defined).

Methods.

Methods are functions that are called using the attribute notation. There are two flavors:
built-in methods (such as append() on lists) and class instance methods. Built-in methods
are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods:
m.im_self is the object whose method this is, and m.im_func is the function implement-
ing the method. Calling m (arg-1, arg-2, ..., arg-n) is completely equivalent to calling
m.im_func(m.im_self, arg-1, arg-2, ..., arg-n).

(See the Python Reference Manual for more info.)

Type Objects.

Type objects represent the various object types. An object’s type is accessed by the built-in
function type (). There are no special operations on types.

Types are written like this: <type ’int’>.

The Null Object.

This object is returned by functions that don’t explicitly return a value. It supports no special
operations. There is exactly one null object, named None (a built-in name).

It is written as None.

File Objects.

File objects are implemented using C’s stdio package and can be created with the built-in
function open() described under Built-in Functions below.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This
includes situations where the operation is not defined for some reason, like seek () on a tty
device or writing a file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore.

flush()
Flush the internal buffer, like stdio’s fflush().

isatty Q)
Return 1 if the file is connected to a tty(-like) device, else 0.

read (size)
Read at most size bytes from the file (less if the read hits EOF or no more data is
immediately available on a pipe, tty or similar device). If the size argument is omitted,
read all data until EOF is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately. (For certain files, like ttys, it
makes sense to continue reading after an EOF is hit.)

readline()
Read one entire line from the file. A trailing newline character is kept in the string
(but may be absent when a file ends with an incomplete line). An empty string is
returned when EOF is hit immediately. Note: unlike stdio’s fgets(), the returned
string contains null characters (?\0?) if they occurred in the input.

readlines()
Read until EOF using readline() and return a list containing the lines thus read.

seek (offset, whence)
Set the file’s current position, like stdio’s fseek(). The whence argument is optional
and defaults to 0 (absolute file positioning); other values are 1 (seek relative to the
current position) and 2 (seek relative to the file’s end). There is no return value.

tell()
Return the file’s current position, like stdio’s ftell().

write (str)
Write a string to the file. There is no return value.

Internal Objects.

(See the Python Reference Manual for these.)

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where
they are relevant:

e z.__dict__ is a dictionary of some sort used to store an object’s (writable) attributes;

e z.__methods__ lists the methods of many built-in object types, e.g., [1.__methods_

is [’append’, ’count’, ’index’, ’insert’, ’remove’, ’reverse’, ’sort’l];
e z.__members__ lists data attributes;
e z.__class__ is the class to which a class instance belongs;

e z.__bases__ is the tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions are string objects. Two distinct string objects with the same value are different
exceptions. This is done to force programmers to use exception names rather than their
string value when specifying exception handlers. The string value of all built-in exceptions is
their name, but this is not a requirement for user-defined exceptions or exceptions defined by
library modules.

The following exceptions can be generated by the interpreter or built-in functions. Except
where mentioned, they have an ‘associated value’ indicating the detailed cause of the error.
This may be a string or a tuple containing several items of information (e.g., an error code
and a string explaining the code).

User code can raise built-in exceptions. This can be used to test an exception handler or
to report an error condition ‘just like’ the situation in which the interpreter raises the same
exception; but beware that there is nothing to prevent user code from raising an inappropriate
error.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not
support attributes references or attribute assignments at all, TypeError is raised.)

EQOFError
Raised when one of the built-in functions (input () or raw_input()) hits an end-of-file
condition (EOF) without reading any data. (N.B.: the read() and readline () methods
of file objects return an empty string when they hit EOF.) No associated value.

I0Error
Raised when an I/O operation (such as a print statement, the built-in open() function

10

or a method of a file object) fails for an I/O-related reason, e.g., ‘file not found’, ‘disk

full’.

ImportError
Raised when an import statement fails to find the module definition or when a
from ... import fails to find a name that is to be imported.

IndexError

Raised when a sequence subscript is out of range. (Slice indices are silently truncated
to fall in the allowed range; if an index is not a plain integer, TypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or DEL). During
execution, a check for interrupts is made regularly. Interrupts typed when a built-in
function input() or raw_input()) is waiting for input also raise this exception. No
associated value.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued
(by deleting some objects). The associated value is a string indicating what kind of
(internal) operation ran out of memory. Note that because of the underlying memory
management architecture (C’s malloc() function), the interpreter may not always be
able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names.
The associated value is the name that could not be found.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This
cannot occur for long integers (which would rather raise MemoryError than give up).
Because of the lack of standardization of floating point exception handling in C, most
floating point operations also aren’t checked. For plain integers, all operations that can
overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The
associated value is a string indicating what precisely went wrong. (This exception is a
relic from a previous version of the interpreter; it is not used any more except by some
extension modules that haven’t been converted to define their own exceptions yet.)

SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import state-
ment, in a call to the built-in functions eval(), exec(), execfile() or input(), or
when reading the initial script or standard input (also interactively).

SystemError

11

Raised when the interpreter finds an internal error, but the situation does not look so
serious to cause it to abandon all hope. The associated value is a string indicating what
went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure
to report the version string of the Python interpreter (sys.version; it is also printed
at the start of an interactive Python session), the exact error message (the exception’s
associated value) and if possible the source of the program that triggered the error.

SystemExit
This exception is raised by the sys.exit() function. When it is not handled, the
Python interpreter exits; no stack traceback is printed. If the associated value is a plain
integer, it specifies the system exit status (passed to C’s exit () function); if it is None,
the exit status is zero; if it has another type (such as a string), the object’s value is
printed and the exit status is one.

A call to sys.exit is translated into an exception so that clean-up handlers (finally
clauses of try statements) can be executed, and so that a debugger can execute a script
without running the risk of losing control. The posix._exit() function can be used
if it is absolutely positively necessary to exit immediately (e.g., after a fork() in the
child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate
type. The associated value is a string giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right
type but an inappropriate value, and the situation is not described by a more precise
exception such as IndexError.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The
associated value is a string indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They
are listed here in alphabetical order.

abs(z)
Return the absolute value of a number. The argument may be a plain or long integer
or a floating point number.

apply (func, args)
The first argument must be a callable object (a user-defined or built-in function or
method, or a class object). The second argument must be a tuple, possibly empty
or a singleton. The function is called with the tuple as argument list; the number of
arguments is the same as the length of the tuple. (This is different from just calling
func(args), since in that case there is always exactly one argument.)

12

chr (2)
Return a string of one character whose ASCII code is the integer i, e.g., chr (97) returns
the string >a’. This is the inverse of ord(). The argument must be in the range [0..255],

inclusive.

cmp(z, y)
Compare the two objects z and y and return an integer according to the outcome. The
return value is negative if z < y, zero if z == y and strictly positive if z > y.

coerce(z, y)
Return a tuple consisting of the two numeric arguments converted to a common type,
using the same rules as used by arithmetic operations.

compile (string, filename, kind)
Compile the string into a code object. Code objects can be executed by exec().
The filename argument should give the file from which the code was read; pass e.g.
’<string>’ if it wasn’t read from a file. The kind argument specifies what kind of code
must be compiled; it can be ’exec’ if string consists of a sequence of statements, or
>eval’ if it consists of a single expression.

dir()
Without arguments, return the list of names in the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a __dict__
attribute), returns the list of names in that object’s attribute dictionary. The resulting
list is sorted. For example:

>>> import sys

>>> dir ()

[’sys’]

>>> dir(sys)

[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]
>>>

divmod(a, b)
Take two numbers as arguments and return a pair of integers consisting of their integer
quotient and remainder. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (¢ / b, a % b).
For floating point numbers the result is the same as (math.floor(a / b), a % b).

eval(s, globals, locals)

The arguments are a string and two optional dictionaries. The string argument is parsed
and evaluated as a Python expression (technically speaking, a condition list) using the
dictionaries as global and local name space. The string must not begin with whitespace,
nor must it contain null bytes. The return value is the result of the expression. If the
third argument is omitted it defaults to the second. If both dictionaries are omitted,
the expression is executed in the environment where eval is called. Syntax errors are
reported as exceptions. Example:

13

>>>x =1

>>> print eval(’x+1’)
2

>>>

This function can also be used to execute arbitrary code objects (e.g. created by
compile()). In this case pass a code object instead of a string.

exec(s, globals, locals)
Similar to eval, but parses and executes the string as a sequence of statements. The
return value is None. The string must not begin with whitespace and must end with a
newline (’\n’). Multiple lines separated by newlines are accepted; the normal indenta-
tion rules must be obeyed. Syntax errors are reported as exceptions. Example:

>>>x =1

>>> exec(’x = x+1\n’)
>>> print x

2

>>>

If a code object is passed instead of a string, this function behaves identical to eval ().

execfile(filename, globals, locals)
Similar to exec, but opens and parses a file instead of taking its input from a string.

float(z)
Convert a number to floating point. The argument may be a plain or long integer or a
floating point number.

getattr (object, name)
The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The result is the value of that attribute. For example,
getattr(z, ’foobar’) is equivalent to z.foobar.

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the
name of one of the object’s attributes, 0 if not. (This is implemented by calling
getattr(object, name) and seeing whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are 32-bit integers.
They are used to quickly compare dictionary keys during a dictionary lookup. Numeric

values that compare equal have the same hash value (even if they are of different types,
e.g. 1 and 1.0).

hex(x)
Convert a number to a hexadecimal string. The result is a valid Python expression.

id (object)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique
and constant for this object during its lifetime. (Two objects whose lifetimes are disjunct

14

may have the same id() value.) (Implementation note: this is the address of the object.)

input (prompt)
Almost equivalent to eval (raw_input (prompt)). As for raw_input (), the prompt
argument is optional. The difference is that a long input expression may be broken over
multiple lines using the backslash convention.

int ()
Convert a number to a plain integer. The argument may be a plain or long integer or
a floating point number.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence
(string, tuple or list) or a mapping (dictionary).

long(z)
Convert a number to a long integer. The argument may be a plain or long integer or a
floating point number.

max (s)
Return the largest item of a non-empty sequence (string, tuple or list).

min(s)
Return the smallest item of a non-empty sequence (string, tuple or list).

oct(z)
Convert a number to an octal string. The result is a valid Python expression.

open (filename , mode)

Return a new file object (described earlier under Built-in Types). The string arguments
are the same as for stdio’s fopen(): filename is the file name to be opened, mode
indicates how the file is to be opened: ’r’ for reading, *w’ for writing (truncating an
existing file), and ’a’ opens it for appending. Modes *r+’, *w+’ and ’a+’ open the
file for updating, provided the underlying stdio library understands this. On systems
that differentiate between binary and text files, b’ appended to the mode opens the
file in binary mode. If the file cannot be opened, I0OError is raised.

ord(c)
Return the Ascir value of a string of one character. E.g., ord(’a’) returns the integer
97. This is the inverse of chr().

pow(z, y)
Return z to the power y. The arguments must have numeric types. With mixed operand
types, the rules for binary arithmetic operators apply. The effective operand type is
also the type of the result; if the result is not expressible in this type, the function raises
an exception; e.g., pow(2, -1) is not allowed.

range (start, end, step)
This is a versatile function to create lists containing arithmetic progressions. It is most
often used in for loops. The arguments must be plain integers. If the step argument
is omitted, it defaults to 1. If the start argument is omitted, it defaults to 0. The full
form returns a list of plain integers [start, start + step, start + 2 * step, ...]1. If
step is positive, the last element is the largest start + ¢ * step less than end; if step is

15

negative, the last element is the largest start + ¢ * step greater than end. step must
not be zero. Example:

>>> range(10)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

(o, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[o, 3, 6, 9]

>>> range(0, -10, -1)

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

]

>>> range(1, 0)

]

>>>

raw_input (prompt)
The string argument is optional; if present, it is written to standard output without
a trailing newline. The function then reads a line from input, converts it to a string
(stripping a trailing newline), and returns that. When EOF is read, EOFError is raised.
Example:

>>> s = raw_input(’--> ?)

——> Monty Python’s Flying Circus
>>> s

’Monty Python\’s Flying Circus’
>>>

reload(module)

Re-parse and re-initialize an already imported module. The argument must be a module
object, so it must have been successfully imported before. This is useful if you have
edited the module source file using an external editor and want to try out the new
version without leaving the Python interpreter. Note that if a module is syntactically
correct but its initialization fails, the first import statement for it does not import the
name, but does create a (partially initialized) module object; to reload the module you
must first import it again (this will just make the partially initialized module object
available) before you can reload() it.

repr (object)
This function returns exactly the same value as ‘object. It is sometimes useful to be
able to access this operation as an ordinary function.

round(z, n)
Return the floating point value z rounded to n digits after the decimal point. If n is
omitted, it defaults to zero. The result is a floating point number. Values are rounded

16

to the closest multiple of 10 to the power minus n; if two multiples are equally close,
rounding is done away from 0 (so e.g. round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart of getattr. The arguments are an object, a string and an
arbitrary value. The string must be the name of one of the object’s attributes. The
function assigns the value to the attribute, provided the object allows it. For example,
setattr(z, ’foobar’, 123) is equivalent to z.foobar = 123.

str (object)
This function returns repr (object) unless object is a string, in which case it returns
object unchanged. It is sometimes useful to make sure that a value is a string without
surrounding it with string quotes like repr (object) does if its argument is a string.

type (object)
Return the type of an object. The return value is a type object. There is not much you
can do with type objects except compare them to other type objects; e.g., the following
checks if a variable is a string:

>>> if type(x) == type(’’): print ’It is a string’

17

Chapter 3

Built-in Modules

The modules described in this section are built into the interpreter. They must be imported
using import. Some modules are not always available; it is a configuration option to provide
them. Details are listed with the descriptions, but the best way to see if a module exists in a
particular implementation is to attempt to import it.

3.1 Built-in Module sys

This module provides access to some variables used or maintained by the interpreter and to
functions that interact strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. sys.argv[0] is the
script name. If no script name was passed to the Python interpreter, sys.argv is
empty.

builtin_module_names
A list of strings giving the names of all modules that are compiled into this Python
interpreter. (This information is not available in any other way — sys.modules.keys ()
only lists the imported modules.)

exc_type

exc_value

exc_traceback
These three variables are not always defined; they are set when an exception handler
(an except clause of a try statement) is invoked. Their meaning is: exc_type gets the
exception type of the exception being handled; exc_value gets the exception parameter
(its associated value or the second argument to raise); exc_traceback gets a traceback
object which encapsulates the call stack at the point where the exception originally
occurred.

exit(n)
Exit from Python with numeric exit status n. This is implemented by raising the
SystemExit exception, so cleanup actions specified by finally clauses of try statements

18

are honored, and it is possible to catch the exit attempt at an outer level.

exitfunc

This value is not actually defined by the module, but can be set by the user (or by
a program) to specify a clean-up action at program exit. When set, it should be a
parameterless function. This function will be called when the interpreter exits in any
way (but not when a fatal error occurs: in that case the interpreter’s internal state
cannot be trusted).

last_type
last_value
last_traceback

These three variables are not always defined; they are set when an exception is not
handled and the interpreter prints an error message and a stack traceback. Their
intended use is to allow an interactive user to import a debugger module and engage
in post-mortem debugging without having to re-execute the command that cause the
error (which may be hard to reproduce). The meaning of the variables is the same as
that of exc_type, exc_value and exc_tracaback, respectively.

modules

path

ps2

Gives the list of modules that have already been loaded. This can be manipulated to
force reloading of modules and other tricks.

A list of strings that specifies the search path for modules. Initialized from the environ-
ment variable PYTHONPATH, or an installation-dependent default.

Strings specifying the primary and secondary prompt of the interpreter. These are only
defined if the interpreter is in interactive mode. Their initial values in this case are
’>>> 2and ’... .

settrace (tracefunc)

Set, the system’s trace function, which allows you to implement a Python source code
debugger in Python. The standard modules pdb and wdb are such debuggers; the
difference is that wdb uses windows and needs STDWIN, while pdb has a line-oriented
interface not unlike dbx. See the file ‘pdb.doc’ in the Python library source directory
for more documentation (both about pdb and sys.trace).

setprofile (profilefunc)

Set the system’s profile function, which allows you to implement a Python source code
profiler in Python. The system’s profile function is called similarly to the system’s trace
function (see sys.settrace), but it isn’t called for each executed line of code (only on
call and return and when an exception occurs). Also, its return value is not used, so it
can just return None.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams.

19

sys.stdin is used for all interpreter input except for scripts but including calls to
input () and raw_input (). sys.stdout is used for the output of print and expression
statements and for the prompts of input () and raw_input (). The interpreter’s own
prompts and its error messages are written to stderr. Assigning to sys.stderr has no
effect on the interpreter; it can be used to write error messages to stderr using print.

3.2 Built-in Module __main_

This module represents the (otherwise anonymous) scope in which the interpreter’s main
program executes — commands read either from standard input or from a script file.

3.3 Built-in Module math

This module is always available. It provides access to the mathematical functions defined by
the C standard. They are: acos(z), asin(z), atan(z), atan2(z, y), ceil(z), cos(x),
cosh(z), exp(z), fabs(z), floor(z), fmod(z, y), frexp(z), ldexp(z, y), log(z),
logl0(z), modf (z), pow(z, y), sin(z), sinh(z), sqrt(z), tan(z), tanh(z).

Note that frexp and modf have a different call/return pattern than their C equivalents: they
take a single argument and return a pair of values, rather than returning their second return
value through an ‘output parameter’ (there is no such thing in Python).

The module also defines two mathematical constants: pi and e.

3.4 Built-in Module time

This module provides various time-related functions. It is always available. (On some systems,
not all functions may exist; e.g. the “milli” variants can’t always be implemented.)

An explanation of some terminology and conventions is in order.

e The “epoch” is the point where the time starts. On January 1st that year, at 0 hours,
the “time since the epoch” is zero. For UNIX, the epoch is 1970. To find out what the
epoch is, look at the first element of gmtime (0).

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time). The
acronym UTC is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour
during part of the year. DST rules are magic (determined by local law) and can change
from year to year. The C library has a table containing the local rules (often it is read
from a system file for flexibility) and is the only source of True Wisdom in this respect.

e The precision of the various real-time functions may be less than suggested by the units
in which their value or argument is expressed. E.g. on most UNIX systems, the clock

20

“ticks” only every 1/50th or 1/100th of a second, and on the Mac, it ticks 60 times a
second.

Functions and data items are:

altzone
The offset of the local DST timezone, in seconds west of the Oth meridian, if one is
defined. Only use this if daylight is nonzero.

asctime (tuple)
Convert a tuple representing a time as returned by gmtime () or localtime() to a 24-
character string of the following form: ’Sun Jun 20 23:21:05 1993°. Note: unlike
the C function of the same name, there is no trailing newline.

ctime (secs)
Convert a time expressed in seconds since the epoch to a string representing local time.
ctime(t) is equivalent to asctime(localtime (t)).

daylight
Nonzero if a DST timezone is defined.

gmtime (secs)
Convert a time expressed in seconds since the epoch to a tuple of 9 integers, in UTC:
year (e.g. 1993), month (1-12), day (1-31), hour (0-23), minute (0-59), second (0-59),
weekday (0-6, monday is 0), julian day (1-366), dst flag (always zero). Fractions of a
second are ignored. Note subtle differences with the C function of this name.

localtime (secs)
Like gmtime but converts to local time. The dst flag is set to 1 when DST applies to
the given time.

millisleep(msecs)
Suspend execution for the given number of milliseconds. (Obsolete, you can now use
use sleep with a floating point argument.)

millitimer ()
Return the number of milliseconds of real time elapsed since some point in the past that
is fixed per execution of the python interpreter (but may change in each following run).
The return value may be negative, and it may wrap around.

mktime (tuple)
This is the inverse function of localtime. Its argument is the full 9-tuple (since the dst
flag is needed). It returns an integer.

sleep(secs)
Suspend execution for the given number of seconds. The argument may be a floating
point number to indicate a more precise sleep time.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in
UTC. Note that even though the time is always returned as a floating point number,
not all systems provide time with a better precision than 1 second. An alternative for
measuring precise intervals is millitimer.

21

timezone
The offset of the local (non-DST) timezone, in seconds west of the Oth meridian (i.e.
negative in most of Western Europe, positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second
is the name of the local DST timezone. If no DST timezone is defined, the second string
should not be used.

3.5 Built-in Module regex

This module provides regular expression matching operations similar to those found in Emacs.
It is always available.

By default the patterns are Emacs-style regular expressions; there is a way to change the
syntax to match that of several well-known UNIX utilities.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters
whose high bit is set.

Please note: There is a little-known fact about Python string literals which means that you
don’t usually have to worry about doubling backslashes, even though they are used to escape
special characters in string literals as well as in regular expressions. This is because Python
doesn’t remove backslashes from string literals if they are followed by an unrecognized escape
character. However, if you want to include a literal backslash in a regular expression repre-
sented as a string literal, you have to quadruple it. E.g. to extract LaTeX ‘\section{...}’
headers from a document, you can use this pattern: ’>\\\\section{\(.*\)}’.

The module defines these functions, and an exception:

match (pattern, string)
Return how many characters at the beginning of string match the regular expression
pattern. Return -1 if the string does not match the pattern (this is different from a
zero-length match!).

search (pattern, string)
Return the first position in string that matches the regular expression pattern. Return
-1 if no position in the string matches the pattern (this is different from a zero-length
match anywhere!).

compile (pattern, translate)
Compile a regular expression pattern into a regular expression object, which can be
used for matching using its match and search methods, described below. The optional
translate, if present, must be a 256-character string indicating how characters (both of
the pattern and of the strings to be matched) are translated before comparing them;
the i-th element of the string gives the translation for the character with ASCII code
i.

The sequence

22

prog = regex.compile(pat)
result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

but the version using compile () is more efficient when multiple regular expressions are
used concurrently in a single program. (The compiled version of the last pattern passed
to regex.match() or regex.search() is cached, so programs that use only a single
regular expression at a time needn’t worry about compiling regular expressions.)

set_syntax(flags)
Set the syntax to be used by future calls to compile, match and search. (Already
compiled expression objects are not affected.) The argument is an integer which is
the OR of several flag bits. The return value is the previous value of the syntax flags.
Names for the flags are defined in the standard module regex_syntax; read the file
‘regex_syntax.py for more information.

error
Exception raised when a string passed to one of the functions here is not a valid regular
expression (e.g., unmatched parentheses) or when some other error occurs during com-
pilation or matching. (It is never an error if a string contains no match for a pattern.)

casefold
A string suitable to pass as translate argument to compile to map all upper case
characters to their lowercase equivalents.

Compiled regular expression objects support these methods:

match (string, pos)
Return how many characters at the beginning of string match the compiled regular
expression. Return -1 if the string does not match the pattern (this is different from a
zero-length match!).

The optional second parameter pos gives an index in the string where the search is to
start; it defaults to 0. This is not completely equivalent to slicing the string; the >~
pattern character matches at the real begin of the string and at positions just after a
newline, not necessarily at the index where the search is to start.

search (string, pos)
Return the first position in string that matches the regular expression pattern. Return
-1 if no position in the string matches the pattern (this is different from a zero-length
match anywhere!).

The optional second parameter has the same meaning as for the match method.

group (indez , indezx, ...)
This method is only valid when the last call to the match or search method found a
match. It returns one or more groups of the match. If there is a single index argument,

23

the result is a single string; if there are multiple arguments, the result is a tuple with
one item per argument. If the index is zero, the corresponding return value is the entire
matching string; if it is in the inclusive range [1..9], it is the string matching the the
corresponding parenthesized group (using the default syntax, groups are parenthesized
using (and)). If no such group exists, the corresponding result is None.

Compiled regular expressions support these data attributes:

regs
When the last call to the match or search method found a match, this is a tuple of
pairs of indices corresponding to the beginning and end of all parenthesized groups in
the pattern. Indices are relative to the string argument passed to match or search. The
0-th tuple gives the beginning and end or the whole pattern. When the last match or
search failed, this is None.

last
When the last call to the match or search method found a match, this is the string
argument passed to that method. When the last match or search failed, this is None.

translate
This is the value of the translate argument to regex.compile that created this regular
expression object. If the translate argument was omitted in the regex.compile call,
this is None.

3.6 Built-in Module marshal

This module contains functions that can read and write Python values in a binary format.
The format is specific to Python, but independent of machine architecture issues (e.g., you
can write a Python value to a file on a VAX, transport the file to a Mac, and read it back
there). Details of the format not explained here; read the source if you're interested.

Not all Python object types are supported; in general, only objects whose value is independent
from a particular invocation of Python can be written and read by this module. The following
types are supported: None, integers, long integers, floating point numbers, strings, tuples, lists,
dictionaries, and code objects, where it should be understood that tuples, lists and dictionaries
are only supported as long as the values contained therein are themselves supported; and
recursive lists and dictionaries should not be written (they will cause an infinite loop).

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump (value, file)
Write the value on the open file. The value must be a supported type. The file must
be an open file object such as sys.stdout or returned by open() or posix.popen().

If the value has an unsupported type, garbage is written which cannot be read back by
load().

load(file)
Read one value from the open file and return it. If no valid value is read, raise EOFError,

24

ValueError or TypeError. The file must be an open file object.

dumps (value)
Return the string that would be written to a file by dump(value, file). The value
must be a supported type.

loads (string)
Convert the string to a value. If no valid value is found, raise EQFError, ValueError
or TypeError. Extra characters in the string are ignored.

3.7 Built-in module struct

This module performs conversions between Python values and C structs represented as Python
strings. It uses format strings (explained below) as a compact descriptions of the lay-out of
the C structs and the intended conversion to/from Python values.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, vi, v2, ...))
Return a string containing the values v1, v2, ... packed according to the given format.
The arguments must match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed by pack(fmt, ...)) according to the given for-
mat. The result is a tuple even if it contains exactly one item. The string must
contain exactly the amount of data required by the format (i.e. len(string) must equal
calcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values
should be obvious given their types:

Format | C Python
‘x’ pad byte no value
‘c’ char string of length 1
‘D’ signed char | integer
‘n’ short integer
‘i’ int integer
‘v long integer
“f7 float float
‘d’ double float

A format character may be preceded by an integral repeat count; e.g. the format string ’4h’
means exactly the same as *hhhh’.

25

C numbers are represented in the machine’s native format and byte order, and properly
aligned by skipping pad bytes if necessary (according to the rules used by the C compiler).

Examples (all on a big-endian machine):

pack(’hhl’, 1, 2, 3) == ’\000\001\000\002\000\000\000\003"
unpack(’hhl’, >\000\001\000\002\000\000\000\003’) == (1, 2, 3)
calcsize(’hhl’) ==

Hint: to align the end of a structure to the alignment requirement of a particular type, end
the format with the code for that type with a repeat count of zero, e.g. the format >11h01°
specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries.

(More format characters are planned, e.g. ’s’ for character arrays, upper case for unsigned
variants, and a way to specify the byte order, which is useful for [de]constructing network
packets and reading/writing portable binary file formats like TIFF and AIFF.)

3.8 Built-in module array

This module defines a new object type which can efficiently represent an array of basic values:
characters, integers, floating point numbers. Arrays are sequence types and behave very much
like lists, except that the type of objects stored in them is constrained. The type is specified
at object creation time by using a type code, which is a single character. The following type
codes are defined:

Typecode Type Minimal size in bytes
¢’ character 1
b’ signed integer 1
’h’ signed integer 2
1 signed integer 4
i floating point 4
’q° floating point 8

The actual representation of values is determined by the machine architecture (strictly spoken,
by the C implementation).

The module defines the following function:

array (typecode, initializer)
Return a new array whose items are restricted by typecode, and initialized from the
optional initializer value, which must be a list or a string. The list or string is passed to
the new array’s fromlist() or fromstring() method (see below) to add initial items
to the array.

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

26

itemsize
The length in bytes of one array item in the internal representation.

append (z)
Append a new item with value z to the end of the array.

insert (i, z)
Insert a new item with value z in the array before position i.

read(f, n)
Read n items (as machine values) from the file object f and append them to the end
of the array. If less than n items are available, EOFError is raised, but the items that
were available are still inserted into the array.

write(f)
Write all items (as machine values) to the file object f.

fromstring(s)
Appends items from the string, interpreting the string as an array of machine values
(i.e. as if it had been read from a file using the read() method).

tostring()
Convert the array to an array of machine values and return the string representation
(the same sequence of bytes that would be written to a file by the write () method.)

fromlist (list)
Appends items from the list. This is equivalent to for x in list: a.append(x) except
that if there is a type error, the array is unchanged.

tolist ()
Convert the array to an ordinary list with the same items.

When an array object is printed or converted to a string, it is represented as
array (typecode , initializer). The initializer is omitted if the array is empty, otherwise it is
a string if the typecode is ’c’, otherwise it is a list of numbers. The string is guaranteed to
be able to be converted back to an array with the same type and value using reverse quotes
(“¢). Examples:

array(’1’)

array(’c’, ’hello world’)
array(°1l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

27

Chapter 4

Standard Modules

The following standard modules are defined. They are available in one of the directories in
the default module search path (try printing sys.path to find out the default search path.)

4.1 Standard Module string

This module defines some constants useful for checking character classes, some exceptions,
and some useful string functions. The constants are:
digits

The string >0123456789°.

hexdigits
The string >0123456789abcdef ABCDEF °.

letters
The concatenation of the strings lowercase and uppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most
systems this is the string >abcdefghi jklmnopqrstuvwxyz’. Do not change its definition
— the effect on the routines upper and swapcase is undefined.

octdigits
The string >01234567°.

uppercase
A string containing all the characters that are considered uppercase letters. On most
systems this is the string > ABCDEFGHI JKLMNOPQRSTUVWXYZ’. Do not change its definition
— the effect on the routines lower and swapcase is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this
includes the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not
change its definition — the effect on the routines strip and split is undefined.

The exceptions are:

28

atoi_error
Exception raised by atoi when a non-numeric string argument is detected. The excep-
tion argument is the offending string.

index_error
Exception raised by index when sub is not found. The argument are the offending
arguments to index: (s, sub).

The functions are:

atoi(s)
Converts a string to a number. The string must consist of one or more digits, optionally
preceded by a sign (‘+” or ‘=7).

expandtabs(s, tabsize)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each
newline occurring in the string. This doesn’t understand other non-printing characters
or escape sequences.

find (s, sub, %)
Return the lowest index in s not smaller than ¢ where the substring sub is found. Return

-1 when sub does not occur as a substring of s with index at least ¢. If i is omitted, it
defaults to 0.

index (s, sub, %)
Like index but raise index_error when the substring is not found.

lower(s)
Convert letters to lower case.

split(s)
Returns a list of the whitespace-delimited words of the string s.

splitfields(s, sep)
Returns a list containing the fields of the string s, using the string sep as a separator.
The list will have one more items than the number of non-overlapping occurrences
of the separator in the string. Thus, string.splitfields(s, ’ ’) is not the same
as string.split(s), as the latter only returns non-empty words. As a special case,
splitfields(s, ’’) returns [s], for any string s. (See also regsub.split().)

join(words)
Concatenate a list or tuple of words with intervening spaces.

joinfields(words, sep)
Concatenate a list or tuple of words with intervening separators. It is always true that
string.joinfields(string.splitfields(¢, sep), sep) equals ¢.

strip(s)
Removes leading and trailing whitespace from the string s.

swapcase(s)
Converts lower case letters to upper case and vice versa.

29

upper (s)
Convert letters to upper case.

ljust(s, width)

rjust (s, width)

center (s, width)
These functions respectively left-justify, right-justify and center a string in a field of
given width. They return a string that is at least width characters wide, created by
padding the string s with spaces until the given width on the right, left or both sides.
The string is never truncated.

zfill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings
starting with a sign are handled correctly.

4.2 Standard Module rand

This module implements a pseudo-random number generator with an interface similar to
rand () in C. It defines the following functions:

rand ()
Returns an integer random number in the range [0 ... 32768).

choice(s)
Returns a random element from the sequence (string, tuple or list) s.

srand (seed)
Initializes the random number generator with the given integral seed. When the module
is first imported, the random number is initialized with the current time.

4.3 Standard Module whrandom

This module implements a Wichmann-Hill pseudo-random number generator. It defines the
following functions:

random()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed(z, ¥y, 2)
Initializes the random number generator from the integers z, y and z. When the module
is first imported, the random number is initialized using values derived from the current
time.

4.4 Standard Module regsub

This module defines a number of functions useful for working with regular expressions (see
built-in module regex).

30

sub(pat, repl, str)
Replace the first occurrence of pattern pat in string str by replacement repl. If the
pattern isn’t found, the string is returned unchanged. The pattern may be a string
or an already compiled pattern. The replacement may contain references ‘\digit’ to
subpatterns and escaped backslashes.

gsub(pat, repl, str)
Replace all (non-overlapping) occurrences of pattern pat in string str by replacement
repl. The same rules as for sub() apply. Empty matches for the pattern are replaced
only when not adjacent to a previous match, so e.g. gsub(’’, ’-’, ’abc’) returns
’—a-b-c-’.

split (sir, pat)
Split the string str in fields separated by delimiters matching the pattern pat, and
return a list containing the fields. Only non-empty matches for the pattern are consid-
ered, so e.g. split(’a:b’, ’:*’) returns [’a’, ’b’] and split(’abc’, ’’) returns
[’abc’].

4.5 Standard Module os

This module provides a more portable way of using operating system (OS) dependent func-
tionality than importing an OS dependent built-in module like posix.

When the optional built-in module posix is available, this module exports the same functions
and data as posix; otherwise, it searches for an OS dependent built-in module like mac and
exports the same functions and data as found there. The design of all Python’s built-in OS
dependen modules is such that as long as the same functionality is available, it uses the same
interface; e.g., the function os.stat (file) returns stat info about a file in a format compatible
with the POSIX interface.

Extensions peculiar to a particular OS are also available through the os module, but using
them is of course a threat to portability!

Note that after the first time os is imported, there is no performance penalty in using functions
from os instead of directly from the OS dependent built-in module, so there should be no
reason not to use os!

In addition to whatever the correct OS dependent module exports, the following variables are
always exported by os:

name
The name of the OS dependent module imported, e.g. ’posix’ or ’mac’.

path
The corresponding OS dependent standard module for pathname operations, e.g.,
posixpath or macpath. Thus, (given the proper imports), os.path.split(file) is
equivalent to but more portable than posixpath.split (file).

curdir
The constant string used by the OS to refer to the current directory, e.g. *.° for POSIX
or ’:’ for the Mac.

31

pardir

sep

The constant string used by the OS to refer to the parent directory, e.g. ..’ for POSIX
or ’::’ for the Mac.

The character used by the OS to separate pathname components, e.g. ’/’ for POSIX
or ?:’ for the Mac. Note that knowing this is not sufficient to be able to parse or
concatenate pathnames—better use os.path.split() and os.path.join()—but it is
occasionally useful.

32

Chapter 5

MOST OPERATING SYSTEMS

5.1 Built-in Module posix

This module provides access to operating system functionality that is standardized by the
C Standard and the POSIX standard (a thinly diguised UNIX interface). It is available in
all Python versions except on the Macintosh; the MS-DOS version does not support certain
functions. The descriptions below are very terse; refer to the corresponding UNIX manual
entry for more information.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors
reported by the system calls raise posix.error, described below.

Module posix defines the following data items:

environ
A dictionary representing the string environment at the time the interpreter was started.
(Modifying this dictionary does not affect the string environment of the interpreter.) For
example, posix.environ[’HOME’] is the pathname of your home directory, equivalent
to getenv ("HOME") in C.

error
This exception is raised when an POSIX function returns a POSIX-related error (e.g.,
not for illegal argument types). Its string value is >posix.error’. The accompanying
value is a pair containing the numeric error code from errno and the corresponding
string, as would be printed by the C function perror ().

It defines the following functions:

chdir (path)
Change the current working directory to path.

chmod (path, mode)
Change the mode of path to the numeric mode.

close (fd)
Close file descriptor fd.

dup (fd)

33

Return a duplicate of file descriptor fd.

dup2(fd, fd2)
Duplicate file descriptor fd to fd2, closing the latter first if necessary. Return None.
_exit(n)
Exit to the system with status n, without calling cleanup handlers, flushing stdio buffers,
etc. (Not on MS-DOS.)

Note: the standard way to exit is sys.exit(n). posix.exit() should normally only
be used in the child process after a fork().

exec(path, args)
Execute the executable path with argument list args, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. (Not on
MS-DOS.)

fork()
Fork a child process. Return 0 in the child, the child’s process id in the parent. (Not
on MS-DOS.)

fstat (fd)
Return status for file descriptor fd, like stat ().

getcwd()

Return a string representing the current working directory.
getegid()

Return the current process’s effective group id. (Not on MS-DOS.)

geteuid ()
Return the current process’s effective user id. (Not on MS-DOS.)

getgid()

Return the current process’s group id. (Not on MS-DOS.)
getpid()

Return the current process id. (Not on MS-DOS.)

getppid()
Return the parent’s process id. (Not on MS-DOS.)

getuid()
Return the current process’s user id. (Not on MS-DOS.)

kill(pid, sig)
Kill the process pid with signal sig. (Not on MS-DOS.)

link(src, dst)
Create a hard link pointing to src named dst. (Not on MS-DOS.)

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary
order. It includes the special entries >.> and ’..’ if they are present in the directory.

lseek(fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how: 0 to

34

set the position relative to the beginning of the file; 1 to set it relative to the current
position; 2 to set it relative to the end of the file.

lstat (path)
Like stat (), but do not follow symbolic links. (On systems without symbolic links, this
is identical to posix.stat.)

mkdir (path, mode)
Create a directory named path with numeric mode mode.

nice (increment)
Add incr to the process’ “niceness”. Return the new niceness. (Not on MS-DOS.)

open(file, flags, mode)
Open the file file and set various flags according to flags and possibly its mode according
to mode. Return the file descriptor for the newly opened file.

pipe)
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing,
respectively. (Not on MS-DOS.)

popen(command, mode)
Open a pipe to or from command. The return value is an open file object connected to
the pipe, which can be read or written depending on whether mode is *r? or *w’. (Not
on MS-DOS.)

read(fd, n)
Read at most n bytes from file descriptor fd. Return a string containing the bytes read.

readlink (path)
Return a string representing the path to which the symbolic link points. (On systems
without symbolic links, this always raises posix.error.)

rename (src, dst)
Rename the file or directory src to dst.

rmdir (path)
Remove the directory path.

stat (path)
Perform a stat system call on the given path. The return value is a tuple of at least
10 integers giving the most important (and portable) members of the stat structure, in
the order st_mode, st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime,
st_mtime, st_ctime. More items may be added at the end by some implementations.
(On MS-DOS, some items are filled with dummy values.)

Note: The standard module stat defines functions and constants that are useful for
extracting information from a stat structure.

symlink (src, dst)
Create a symbolic link pointing to src named dst. (On systems without symbolic links,
this always raises posix.error.)

system(command)
Execute the command (a string) in a subshell. This is implemented by calling the Stan-

35

dard C function system(), and has the same limitations. Changes to posix.environ,
sys.stdin etc. are not reflected in the environment of the executed command. The
return value is the exit status of the process as returned by Standard C system().

times ()
Return a 4-tuple of floating point numbers indicating accumulated CPU times, in sec-
onds. The items are: user time, system time, children’s user time, and children’s system
time, in that order. See the UNIX manual page times(2). (Not on MS-DOS.)

umask (mask)
Set the current numeric umask and returns the previous umask. (Not on MS-DOS.)

uname ()
Return a 5-tuple containing information identifying the current operating system. The
tuple contains 5 strings: (sysname, nodename, release, version, machine). Some
systems truncate the nodename to 8 characters or to the leading component; an better
way to get the hostname is socket.gethostname(). (Not on MS-DOS, nor on older
UNIX systems.)

unlink (path)
Unlink path.

utime (path, (atime, mtime))
Set the access and modified time of the file to the given values. (The second argument
is a tuple of two items.)

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit
status indication (encoded as by UNix). (Not on MS-DOS.)

waitpid(pid, options)
Wait for completion of a child process given by proces id, and return a tuple containing
its pid and exit status indication (encoded as by UNIX). The semantics of the call are
affected by the value of the integer options, which should be 0 for normal operation.

(If the system does not support waitpid(), this always raises posix.error. Not on
MS-DOS.)

write(fd, str)
Write the string str to file descriptor fd. Return the number of bytes actually written.

5.2 Standard Module posixpath

This module implements some useful functions on POSIX pathnames.

basename (p)
Return the base name of pathname p. This is the second half of the pair returned by
posixpath.split(p).

commonprefix (list)
Return the longest string that is a prefix of all strings in list. If list is empty, return
the empty string (*?).

36

exists(p)
Return true if p refers to an existing path.

expanduser (p)
Return the argument with an initial component of ‘” or ‘~user’ replaced by that user’s
home directory. An initial ¢~ is replaced by the environment variable $HOME; an initial
‘““user’ is looked up in the password directory through the built-in module pwd. If
the expansion fails, or if the path does not begin with a tilde, the path is returned
unchanged.

¢

isabs(p)
Return true if p is an absolute pathname (begins with a slash).

isfile(p)
Return true if p is an existing regular file. This follows symbolic links, so both islink()
and isfile() can be true for the same path.

isdir(p)
Return true if p is an existing directory. This follows symbolic links, so both islink()
and isdir() can be true for the same path.

islink(p)
Return true if p refers to a directory entry that is a symbolic link. Always false if
symbolic links are not supported.

ismount (p)
Return true if p is a mount point. (This currently checks whether p/.. is on a different
device as p or whether p/.. and p point to the same i-node on the same device — is
this test correct for all UNIX and POSIX variants?)

join(p, ¢)
Join the paths p and ¢ intelligently: If ¢ is an absolute path, the return value is g.
Otherwise, the concatenation of p and ¢ is returned, with a slash (’/?) inserted unless
p is empty or ends in a slash.

normcase(p)
Normalize the case of a pathname. This returns the path unchanged; however, a similar
function in macpath converts upper case to lower case.

samefile(p, q)
Return true if both pathname arguments refer to the same file or directory (as indicated
by device number and i-node number). Raise an exception if a stat call on either
pathname fails.

split(p)
Split the pathname p in a pair (head, tail), where tail is the last pathname component
and head is everything leading up to that. If p ends in a slash (except if it is the
root), the trailing slash is removed and the operation applied to the result; otherwise,
join(head, tail) equals p. The tail part never contains a slash. Some boundary cases:
if p is the root, head equals p and tail is empty; if p is empty, both head and tail are
empty; if p contains no slash, head is empty and tail equals p.

37

splitext(p)
Split the pathname p in a pair (root, ezt) such that root + ext == p, the last com-
ponent of root contains no periods, and ezt is empty or begins with a period.

walk(p, visit, arg)

Calls the function wvisit with arguments (arg, dirname, names) for each directory in
the directory tree rooted at p (including p itself, if it is a directory). The argument
dirname specifies the visited directory, the argument names lists the files in the directory
(gotten from posix.listdir(dirname)). The wvisit function may modify names to
influence the set of directories visited below dirname, e.g., to avoid visiting certain
parts of the tree. (The object referred to by names must be modified in place, using
del or slice assignment.)

5.3 Standard Module getopt

This module helps scripts to parse the command line arguments in sys.argv. It
uses the same conventions as the UNIX getopt() function. It defines the function
getopt.getopt (args, options) and the exception getopt.error.

The first argument to getopt () is the argument list passed to the script with its first element
chopped off (i.e., sys.argv[1:]). The second argument is the string of option letters that the
script wants to recognize, with options that require an argument followed by a colon (i.e., the
same format that UNIX getopt () uses). The return value consists of two elements: the first
is a list of option-and-value pairs; the second is the list of program arguments left after the
option list was stripped (this is a trailing slice of the first argument). Each option-and-value
pair returned has the option as its first element, prefixed with a hyphen (e.g., >-x’), and the
option argument as its second element, or an empty string if the option has no argument. The
options occur in the list in the same order in which they were found, thus allowing multiple
occurrences. Example:

>>> import getopt, string

>>> args = string.split(’-a -b -cfoo -d bar al a2’)
>>> args

[’-a’, ’-b’, ’-cfoo’, ’>-d’, ’bar’, ’al’, ’a2’]

>>> optlist, args = getopt.getopt(args, ’abc:d:’)

>>> optlist

[(¢’-a’, 7y, (°-b’, °?), (°-c’, ’foo’), (°-d’, ’bar’)]
>>> args

[’al’, ’a2’]

>>>

The exception getopt.error = ’getopt error’ is raised when an unrecognized option is
found in the argument list or when an option requiring an argument is given none. The
argument to the exception is a string indicating the cause of the error.

38

Chapter 6

UNIX ONLY

6.1 Built-in Module pwd

This module provides access to the UNIX password database. It is available on all UNIX
versions.

Password database entries are reported as 7-tuples containing the following items from
the password database (see ‘<pwd.h>’), in order: pw_name, pw_passwd, pw_uid, pw_gid,
pw_gecos, pw_dir, pw_shell. The uid and gid items are integers, all others are strings. An
exception is raised if the entry asked for cannot be found.

It defines the following items:

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam(name)
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

6.2 Built-in Module grp

This module provides access to the UNIX group database. It is available on all UNIX versions.

Group database entries are reported as 4-tuples containing the following items from the
group database (see ‘<grp.h>’), in order: gr_name, gr_passwd, gr_gid, gr_mem. The gid is
an integer, name and password are strings, and the member list is a list of strings. (Note that
most users are not explicitly listed as members of the group(s) they are in.) An exception is
raised if the entry asked for cannot be found.

It defines the following items:

getgrgid(gid)
Return the group database entry for the given numeric group ID.

39

getgrnam(name)
Return the group database entry for the given group name.

getgrall()
Return a list of all available group entries entries, in arbitrary order.

6.3 Built-in Module socket

This module provides access to the BSD socket interface. It is available on UNIX systems that
support this interface.

For an introduction to socket programming (in C), see the following papers: An Introductory
4.8BSD Interprocess Communication Tutorial, by Stuart Sechrest and An Advanced 4.3BSD
Interprocess Communication Tutorial, by Samuel J. Leffler et al, both in the UNIX Program-
mer’s Manual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The UNIX manual
pages for the various socket-related system calls also a valuable source of information on the
details of socket semantics.

The Python interface is a straightforward transliteration of the UNIX system call and library
interface for sockets to Python’s object-oriented style: the socket () function returns a socket
object whose methods implement the various socket system calls. Parameter types are some-
what higer-level than in the C interface: as for read() and write() operations on Python
files, buffer allocation on receive operations is automatic, and buffer length is implicit on send
operations.

Socket addresses are represented as a single string for the AF_UNIX address family and as
a pair (host, port) for the AF_INET address family, where host is a string representing ei-
ther a hostname in Internet domain notation like ’daring.cwi.nl’ or an IP address like
?100.50.200.5°, and port is an integral port number. Other address families are currently
not supported. The address format required by a particular socket object is automatically
selected based on the address family specified when the socket object was created.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-
memory conditions can be raised; errors related to socket or address semantics raise the error
socket.error.

Not all socket operations are currently implemented; there are no provisions for asyn-
chronous or non-blocking I/O (but see avail(), and some of the lesser-used primitives such
as getpeername () are not provided.

The module socket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value
is either a string telling what went wrong or a pair (errno, string) representing an
error returned by a system call, similar to the value accompanying posix.error.

AF_UNTX

AF_INET
These constants represent the address (and protocol) families, used for the first argu-
ment to socket ().

40

SOCK_STREAM

SOCK_DGRAM
These constants represent the socket types, used for the second argument to socket ().
(There are other types, but only SOCK_STREAM and SOCK_DGRAM appear to be generally
useful.)

gethostbyname (hostname)
Translate a host name to IP address format. The IP address is returned as a string,
e.g., 7100.50.200.5°. If the host name is an IP address itself it is returned unchanged.

getservbyname (servicename, protocolname)
Translate an Internet service name and protocol name to a port number for that service.
The protocol name should be tcp’ or ’udp’.

socket (family , type, proto)
Create a new socket using the given address family, socket type and protocol num-
ber. The address family should be AF_INET or AF_UNIX. The socket type should be
SOCK_STREAM, SOCK_DGRAM or perhaps one of the other ‘SOCK_’ constants. The protocol
number is usually zero and may be omitted in that case.

fromfd (fd, family, type, proto)

Build a socket object from an existing file descriptor (an integer as returned by a file
object’s fileno method). Address family, socket type and protocol number are as for
the socket function above. The file descriptor should refer to a socket, but this is not
checked — subsequent operations on the object may fail if the file descriptor is invalid.
This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by the UNIX
inet daemon).

6.3.1 Socket Object Methods

Socket objects have the following methods. Except for makefile () these correspond to UNIX
system calls applicable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connec-
tions. The return value is a pair (conn, address) where conn is a new socket object
usable to send and receive data on the connection, and address is the address bound to
the socket on the other end of the connection.

avail()
Return true (nonzero) if at least one byte of data can be received from the socket without
blocking, false (zero) if not. There is no indication of how many bytes are available.
(This function is obsolete — see module select for a more general solution.)

bind (address)
Bind the socket to an address. The socket must not already be bound.

close()
Close the socket. All future operations on the socket object will fail. The remote end
will receive no more data (after queued data is flushed). Sockets are automatically

41

closed when they are garbage-collected.

connect (address)
Connect to a remote socket.

fileno()
Return the socket’s file descriptor (a small integer). This is useful with select.

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out
the port number of a remote IP socket, for instance.

getsockname ()
Return the socket’s own address. This is useful to find out the port number of an IP
socket, for instance.

getsockopt (level, optname, buflen)

Return the value of the given socket option (see the UNIX man page getsockopt(2)).
The needed symbolic constants are defined in module SOCKET. If the optional third
argument is absent, an integer option is assumed and its integer value is returned by
the function. If buflen is present, it specifies the maximum length of the buffer used
to receive the option in, and this buffer is returned as a string. It’s up to the caller to
decode the contents of the buffer (see the optional built-in module struct for a way to
decode C structures encoded as strings).

listen(backlog)
Listen for connections made to the socket. The argument (in the range 0-5) specifies
the maximum number of queued connections.

makefile(mode)
Return a file object associated with the socket. (File objects were described earlier under
Built-in Types.) The file object references a dupped version of the socket file descriptor,
so the file object and socket object may be closed or garbage-collected independently.

recv (bufsize, flags)
Receive data from the socket. The return value is a string representing the data received.
The maximum amount of data to be received at once is specified by bufsize. See the
UNIX manual page for the meaning of the optional argument flags; it defaults to zero.

recvfrom(bufsize)
Receive data from the socket. The return value is a pair (string, address) where string
is a string representing the data received and address is the address of the socket sending
the data.

send (string)
Send data to the socket. The socket must be connected to a remote socket.

sendto (string, address)
Send data to the socket. The socket should not be connected to a remote socket, since
the destination socket is specified by address.

setsockopt (level, optname, value)
Set the value of the given socket option (see the UNIX man page setsockopt(2)). The

42

needed symbolic constants are defined in module SOCKET. The value can be an integer
or a string representing a buffer. In the latter case it is up to the caller to ensure that
the string contains the proper bits (see the optional built-in module struct for a way
to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connection. If how is 0, further receives are
disallowed. If how is 1, further sends are disallowed. If how is 2, further sends and
receives are disallowed.

Note that there are no methods read() or write(); use recv() and send() without flags
argument instead.

6.3.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all
data that it receives back (servicing only one client), and a client using it. Note that a server
must perform the sequence socket, bind, listen, accept (possibly repeating the accept to
service more than one client), while a client only needs the sequence socket, connect. Also
note that the server does not send/receive on the socket it is listening on but on the new
socket returned by accept.

Echo server program
from socket import *
HOST = ’° # Symbolic name meaning the local ho