
Python Library Reference

Guido van Rossum

Dept. CST, CWI, Kruislaan 413

1098 SJ Amsterdam, The Netherlands

E-mail: guido@cwi.nl

July 29, 1993

Abstract

This document describes the built-in types, exceptions and functions and the standard mod-

ules that come with the Python system. It assumes basic knowledge about the Python

language. For an informal introduction to the language, see the Python Tutorial. The Python

Reference Manual gives a more formal de�nition of the language.

Contents

1 Introduction 1

2 Built-in Types, Exceptions and Functions 2

2.1 Built-in Types : 2

2.1.1 Truth Value Testing : 2

2.1.2 Boolean Operations : 3

2.1.3 Comparisons : 3

2.1.4 Numeric Types : 4

2.1.5 Sequence Types : 5

2.1.6 Mapping Types : 7

2.1.7 Other Built-in Types : 7

2.1.8 Special Attributes : 10

2.2 Built-in Exceptions : 10

2.3 Built-in Functions : 12

3 Built-in Modules 18

3.1 Built-in Module sys : 18

3.2 Built-in Module __main__ : 20

3.3 Built-in Module math : 20

3.4 Built-in Module time : 20

3.5 Built-in Module regex : 22

3.6 Built-in Module marshal : 24

3.7 Built-in module struct : 25

3.8 Built-in module array : 26

4 Standard Modules 28

4.1 Standard Module string : 28

4.2 Standard Module rand : 30

4.3 Standard Module whrandom : 30

4.4 Standard Module regsub : 30

4.5 Standard Module os : 31

5 MOST OPERATING SYSTEMS 33

5.1 Built-in Module posix : 33

5.2 Standard Module posixpath : 36

5.3 Standard Module getopt : 38

i

6 UNIX ONLY 39

6.1 Built-in Module pwd : 39

6.2 Built-in Module grp : 39

6.3 Built-in Module socket : 40

6.3.1 Socket Object Methods : 41

6.3.2 Example : 43

6.4 Built-in module select : 44

6.5 Built-in Module dbm : 44

6.6 Built-in Module thread : 45

7 AMOEBA ONLY 47

7.1 Built-in Module amoeba : 47

7.1.1 Capability Operations : 48

8 MACINTOSH ONLY 49

8.1 Built-in module mac : 49

8.2 Standard module macpath : 49

9 STDWIN ONLY 50

9.1 Built-in Module stdwin : 50

9.1.1 Functions De�ned in Module stdwin : : : : : : : : : : : : : : : : : : : 50

9.1.2 Window Object Methods : 54

9.1.3 Drawing Object Methods : 55

9.1.4 Menu Object Methods : 57

9.1.5 Bitmap Object Methods : 57

9.1.6 Text-edit Object Methods : 58

9.1.7 Example : 59

9.2 Standard Module stdwinevents : 59

9.3 Standard Module rect : 60

10 SGI MACHINES ONLY 62

10.1 Built-in Module al : 62

10.2 Standard Module AL : 64

10.3 Built-in Module audio : 64

10.4 Built-in Module gl : 66

10.5 Built-in Module fm : 68

10.6 Standard Modules GL and DEVICE : 69

10.7 Built-in Module fl : 69

10.7.1 Functions de�ned in module fl : 70

10.7.2 Form object methods and data attributes : : : : : : : : : : : : : : : : 71

10.7.3 FORMS object methods and data attributes : : : : : : : : : : : : : : 74

10.8 Standard Module FL : 75

10.9 Standard Module flp : 75

10.10Standard Module panel : 76

10.11Standard Module panelparser : 76

10.12Built-in Module pnl : 76

10.13Built-in Module jpeg : 76

ii

10.14Built-in module imgfile : 77

10.15Built-in module imageop : 78

11 SUN SPARC MACHINES ONLY 80

11.1 Built-in module sunaudiodev : 80

11.1.1 Audio device object methods : 80

12 AUDIO TOOLS 82

12.1 Built-in module audioop : 82

13 CRYPTOGRAPHIC EXTENSIONS 86

13.1 Built-in module mpz : 86

13.2 Built-in module md5 : 87

iii

Chapter 1

Introduction

The Python library consists of three parts, with di�erent levels of integration with the in-

terpreter. Closest to the interpreter are built-in types, exceptions and functions. Next are

built-in modules, which are written in C and linked statically with the interpreter. Finally

there are standard modules that are implemented entirely in Python, but are always available.

For e�ciency, some standard modules may become built-in modules in future versions of the

interpreter.

1

Chapter 2

Built-in Types, Exceptions and

Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table

is searched last, so local and global user-de�ned names can override built-in names. Built-in

types have no names but are created easily by constructing an object of the desired type (e.g.,

using a literal) and applying the built-in function type() to it. They are described together

here for easy reference.

1

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These

are the numeric types, sequence types, and several others, including types themselves. There

is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be

compared, tested for truth value, and converted to a string (with the `: : : ` notation). The

latter conversion is implicitly used when an object is written by the print statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand

of the Boolean operations below. The following values are false:

� None

� zero of any numeric type, e.g., 0, 0L, 0.0.

� any empty sequence, e.g., '', (), [].

� any empty mapping, e.g., {}.

1

Some descriptions sorely lack explanations of the exceptions that may be raised | this will be �xed in a

future version of this document.

2

All other values are true | so objects of many types are always true.

2.1.2 Boolean Operations

These are the Boolean operations:

Operation Result Notes

x or y if x is false, then y , else x (1)

x and y if x is false, then x , else y (1)

not x if x is false, then 1, else 0

Notes:

(1) These only evaluate their second argument if needed for their outcome.

2.1.3 Comparisons

Comparison operations are supported by all objects:

Operation Meaning Notes

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

<> not equal (1)

!= not equal (1)

is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn't choose between abc

and C! :-)

Objects of di�erent types, except di�erent numeric types, never compare equal; such objects

are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a con-

sistent result). Furthermore, some types (e.g., windows) support only a degenerate notion of

comparison where any two objects of that type are unequal. Again, such objects are ordered

arbitrarily but consistently.

(Implementation note: objects of di�erent types except numbers are ordered by their type

names; objects of the same types that don't support proper comparison are ordered by their

address.)

Two more operations with the same syntactic priority, in and not in, are supported only by

sequence types (below).

3

2.1.4 Numeric Types

There are three numeric types: plain integers, long integers, and oating point numbers.

Plain integers (also just called integers) are implemented using long in C, which gives them

at least 32 bits of precision. Long integers have unlimited precision. Floating point numbers

are implemented using double in C. All bets on their precision are o� unless you happen to

know the machine you are working with.

Numbers are created by numeric literals or as the result of built-in functions and operators.

Unadorned integer literals (including hex and octal numbers) yield plain integers. Integer

literals with an `L' or `l' su�x yield long integers (`L' is preferred because 1l looks too much

like eleven!). Numeric literals containing a decimal point or an exponent sign yield oating

point numbers.

Python fully supports mixed arithmetic: when an binary arithmetic operator has operands of

di�erent numeric types, the operand with the \smaller" type is converted to that of the other,

where plain integer is smaller than long integer is smaller than oating point. Comparisons

between numbers of mixed type use the same rule.

2

The functions int(), long() and float()

can be used to coerce numbers to a speci�c type.

All numeric types support the following operations:

Operation Result Notes

abs(x) absolute value of x

int(x) x converted to integer (1)

long(x) x converted to long integer (1)

float(x) x converted to oating point

-x x negated

+x x unchanged

x + y sum of x and y

x - y di�erence of x and y

x * y product of x and y

x / y quotient of x and y (2)

x % y remainder of x / y

divmod(x, y) the pair (x / y, x % y) (3)

pow(x, y) x to the power y

Notes:

(1) Conversion from oating point to (long or plain) integer may round or truncate as in C;

see functions floor and ceil in module math for well-de�ned conversions.

(2) For (plain or long) integer division, the result is an integer; it always truncates towards

zero.

(3) See the section on built-in functions for an exact de�nition.

2

As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

4

Bit-string Operations on Integer Types.

Plain and long integer types support additional operations that make sense only for bit-strings.

Negative numbers are treated as their 2's complement value:

Operation Result Notes

~x the bits of x inverted

x ^ y bitwise exclusive or of x and y

x & y bitwise and of x and y

x | y bitwise or of x and y

x << n x shifted left by n bits

x >> n x shifted right by n bits

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples. Strings literals are written in single

quotes: 'xyzzy'. Lists are constructed with square brackets, separating items with commas:

[a, b, c]. Tuples are constructed by the comma operator (not within square brackets), with

or without enclosing parentheses, but an empty tuple must have the enclosing parentheses,

e.g., a, b, c or (). A single item tuple must have a trailing comma, e.g., (d,).

Sequence types support the following operations (s and t are sequences of the same type; n,

i and j are integers):

Operation Result Notes

len(s) length of s

min(s) smallest item of s

max(s) largest item of s

x in s 1 if an item of s is equal to x , else 0

x not in s 0 if an item of s is equal to x , else 1

s + t the concatenation of s and t

s * n, n * s n copies of s concatenated

s[i] i 'th item of s , origin 0 (1)

s[i:j] slice of s from i to j (1), (2)

Notes:

(1) If i or j is negative, the index is relative to the end of the string, i.e., len(s) + i or

len(s) + j is substituted. But note that -0 is still 0.

(2) The slice of s from i to j is de�ned as the sequence of items with index k such that

i <= k < j . If i or j is greater than len(s), use len(s). If i is omitted, use 0. If j is

omitted, use len(s). If i is greater than or equal to j , the slice is empty.

5

More String Operations.

String objects have one unique built-in operation: the % operator (modulo) with a string

left argument interprets this string as a C sprintf format string to be applied to the right

argument, and returns the string resulting from this formatting operation.

Unless the format string requires exactly one argument, the right argument should be a tuple

of the correct size. The following format characters are understood: %, c, s, i, d, u, o, x, X,

e, E, f, g, G. Width and precision may be a * to specify that an integer argument speci�es

the actual width or precision. The ag characters -, +, blank, # and 0 are understood. The

size speci�ers h, l or L may be present but are ignored. The ANSI features %p and %n are not

supported. Since Python strings have an explicit length, %s conversions don't assume that

'0' is the end of the string.

For safety reasons, huge oating point precisions are truncated; %f conversions for huge

numbers are replaced by %g conversions. All other errors raise exceptions.

Additional string operations are de�ned in standard module string and in built-in module

regex.

Mutable Sequence Types.

List objects support additional operations that allow in-place modi�cation of the object.

These operations would be supported by other mutable sequence types (when added to the

language) as well. Strings and tuples are immutable sequence types and such objects cannot

be modi�ed once created. The following operations are de�ned on mutable sequence types

(where x is an arbitrary object):

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:j] = t slice of s from i to j is replaced by t

del s[i:j] same as s[i:j] = []

s.append(x) same as s[len(x):len(x)] = [x]

s.count(x) return number of i 's for which s[i] == x

s.index(x) return smallest i such that s[i] == x (1)

s.insert(i, x) same as s[i:i] = [x]

s.remove(x) same as del s[s.index(x)] (1)

s.reverse() reverses the items of s in place

s.sort() permutes the items of s to satisfy s[i] <= s[j], for i < j (2)

Notes:

(1) Raises an exception when x is not found in s.

(2) The sort() method takes an optional argument specifying a comparison function of two

arguments (list items) which should return -1, 0 or 1 depending on whether the �rst

argument is considered smaller than, equal to, or larger than the second argument. Note

that this slows the sorting process down considerably; e.g. to sort an array in reverse

6

order it is much faster to use calls to sort() and reverse() than to use sort() with

a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are

mutable objects. There is currently only one mapping type, the dictionary . A dictionary's

keys are almost arbitrary values. The only types of values not acceptable as keys are values

containing lists or dictionaries or other mutable types that are compared by value rather than

by object identity. Numeric types used for keys obey the normal rules for numeric comparison:

if two numbers compare equal (e.g. 1 and 1.0) then they can be used interchangeably to index

the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: value pairs within braces,

for example: {'jack': 4098, 'sjoerd: 4127} or {4098: 'jack', 4127: 'sjoerd}.

The following operations are de�ned on mappings (where a is a mapping, k is a key and x is

an arbitrary object):

Operation Result Notes

len(a) the number of items in a

a[k] the item of a with key k (1)

a[k] = x set a[k] to x

del a[k] remove a[k] from a (1)

a.items() a copy of a 's list of (key, item) pairs (2)

a.keys() a copy of a 's list of keys (2)

a.values() a copy of a 's list of values (2)

a.has_key(k) 1 if a has a key k , else 0

Notes:

(1) Raises an exception if k is not in the map.

(2) Keys and values are listed in random order, but at any moment the ordering of the

keys(), values() and items() lists is the consistent with each other.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or

two operations.

Modules.

The only special operation on a module is attribute access: m.name, where m is a module

and name accesses a name de�ned in m's symbol table. Module attributes can be assigned

to. (Note that the import statement is not, strictly spoken, an operation on a module

7

object; import foo does not require a module object named foo to exist, rather it requires

an (external) de�nition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the mod-

ule's symbol table. Modifying this dictionary will actually change the module's symbol ta-

ble, but direct assignment to the __dict__ attribute is not possible (i.e., you can write

m.__dict__['a'] = 1, which de�nes m.a to be 1, but you can't write m.__dict__ = {}.

Modules are written like this: <module 'sys'>.

Classes and Class Instances.

(See the Python Reference Manual for these.)

Functions.

Function objects are created by function de�nitions. The only operation on a function object

is to call it: func(argument-list).

There are really two avors of function objects: built-in functions and user-de�ned functions.

Both support the same operation (to call the function), but the implementation is di�erent,

hence the di�erent object types.

The implementation adds two special read-only attributes: f .func_code is a function's code

object (see below) and f .func_globals is the dictionary used as the function's global name

space (this is the same as m.__dict__ where m is the module in which the function f was

de�ned).

Methods.

Methods are functions that are called using the attribute notation. There are two avors:

built-in methods (such as append() on lists) and class instance methods. Built-in methods

are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods:

m.im_self is the object whose method this is, and m.im_func is the function implement-

ing the method. Calling m(arg-1, arg-2, : : : , arg-n) is completely equivalent to calling

m.im_func(m.im_self, arg-1, arg-2, : : : , arg-n).

(See the Python Reference Manual for more info.)

Type Objects.

Type objects represent the various object types. An object's type is accessed by the built-in

function type(). There are no special operations on types.

Types are written like this: <type 'int'>.

8

The Null Object.

This object is returned by functions that don't explicitly return a value. It supports no special

operations. There is exactly one null object, named None (a built-in name).

It is written as None.

File Objects.

File objects are implemented using C's stdio package and can be created with the built-in

function open() described under Built-in Functions below.

When a �le operation fails for an I/O-related reason, the exception IOError is raised. This

includes situations where the operation is not de�ned for some reason, like seek() on a tty

device or writing a �le opened for reading.

Files have the following methods:

close()

Close the �le. A closed �le cannot be read or written anymore.

flush()

Flush the internal bu�er, like stdio's fflush().

isatty()

Return 1 if the �le is connected to a tty(-like) device, else 0.

read(size)

Read at most size bytes from the �le (less if the read hits eof or no more data is

immediately available on a pipe, tty or similar device). If the size argument is omitted,

read all data until eof is reached. The bytes are returned as a string object. An empty

string is returned when eof is encountered immediately. (For certain �les, like ttys, it

makes sense to continue reading after an eof is hit.)

readline()

Read one entire line from the �le. A trailing newline character is kept in the string

(but may be absent when a �le ends with an incomplete line). An empty string is

returned when eof is hit immediately. Note: unlike stdio's fgets(), the returned

string contains null characters ('\0') if they occurred in the input.

readlines()

Read until eof using readline() and return a list containing the lines thus read.

seek(o�set, whence)

Set the �le's current position, like stdio's fseek(). The whence argument is optional

and defaults to 0 (absolute �le positioning); other values are 1 (seek relative to the

current position) and 2 (seek relative to the �le's end). There is no return value.

tell()

Return the �le's current position, like stdio's ftell().

write(str)

Write a string to the �le. There is no return value.

9

Internal Objects.

(See the Python Reference Manual for these.)

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where

they are relevant:

� x.__dict__ is a dictionary of some sort used to store an object's (writable) attributes;

� x.__methods__ lists the methods of many built-in object types, e.g., [].__methods__

is ['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort'];

� x.__members__ lists data attributes;

� x.__class__ is the class to which a class instance belongs;

� x.__bases__ is the tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions are string objects. Two distinct string objects with the same value are di�erent

exceptions. This is done to force programmers to use exception names rather than their

string value when specifying exception handlers. The string value of all built-in exceptions is

their name, but this is not a requirement for user-de�ned exceptions or exceptions de�ned by

library modules.

The following exceptions can be generated by the interpreter or built-in functions. Except

where mentioned, they have an `associated value' indicating the detailed cause of the error.

This may be a string or a tuple containing several items of information (e.g., an error code

and a string explaining the code).

User code can raise built-in exceptions. This can be used to test an exception handler or

to report an error condition `just like' the situation in which the interpreter raises the same

exception; but beware that there is nothing to prevent user code from raising an inappropriate

error.

AttributeError

Raised when an attribute reference or assignment fails. (When an object does not

support attributes references or attribute assignments at all, TypeError is raised.)

EOFError

Raised when one of the built-in functions (input() or raw_input()) hits an end-of-�le

condition (eof) without reading any data. (N.B.: the read() and readline()methods

of �le objects return an empty string when they hit eof.) No associated value.

IOError

Raised when an I/O operation (such as a print statement, the built-in open() function

10

or a method of a �le object) fails for an I/O-related reason, e.g., `�le not found', `disk

full'.

ImportError

Raised when an import statement fails to �nd the module de�nition or when a

from : : : import fails to �nd a name that is to be imported.

IndexError

Raised when a sequence subscript is out of range. (Slice indices are silently truncated

to fall in the allowed range; if an index is not a plain integer, TypeError is raised.)

KeyError

Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt

Raised when the user hits the interrupt key (normally Control-C or DEL). During

execution, a check for interrupts is made regularly. Interrupts typed when a built-in

function input() or raw_input()) is waiting for input also raise this exception. No

associated value.

MemoryError

Raised when an operation runs out of memory but the situation may still be rescued

(by deleting some objects). The associated value is a string indicating what kind of

(internal) operation ran out of memory. Note that because of the underlying memory

management architecture (C's malloc() function), the interpreter may not always be

able to completely recover from this situation; it nevertheless raises an exception so that

a stack traceback can be printed, in case a run-away program was the cause.

NameError

Raised when a local or global name is not found. This applies only to unquali�ed names.

The associated value is the name that could not be found.

OverflowError

Raised when the result of an arithmetic operation is too large to be represented. This

cannot occur for long integers (which would rather raise MemoryError than give up).

Because of the lack of standardization of oating point exception handling in C, most

oating point operations also aren't checked. For plain integers, all operations that can

overow are checked except left shift, where typical applications prefer to drop bits than

raise an exception.

RuntimeError

Raised when an error is detected that doesn't fall in any of the other categories. The

associated value is a string indicating what precisely went wrong. (This exception is a

relic from a previous version of the interpreter; it is not used any more except by some

extension modules that haven't been converted to de�ne their own exceptions yet.)

SyntaxError

Raised when the parser encounters a syntax error. This may occur in an import state-

ment, in a call to the built-in functions eval(), exec(), execfile() or input(), or

when reading the initial script or standard input (also interactively).

SystemError

11

Raised when the interpreter �nds an internal error, but the situation does not look so

serious to cause it to abandon all hope. The associated value is a string indicating what

went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure

to report the version string of the Python interpreter (sys.version; it is also printed

at the start of an interactive Python session), the exact error message (the exception's

associated value) and if possible the source of the program that triggered the error.

SystemExit

This exception is raised by the sys.exit() function. When it is not handled, the

Python interpreter exits; no stack traceback is printed. If the associated value is a plain

integer, it speci�es the system exit status (passed to C's exit() function); if it is None,

the exit status is zero; if it has another type (such as a string), the object's value is

printed and the exit status is one.

A call to sys.exit is translated into an exception so that clean-up handlers (finally

clauses of try statements) can be executed, and so that a debugger can execute a script

without running the risk of losing control. The posix._exit() function can be used

if it is absolutely positively necessary to exit immediately (e.g., after a fork() in the

child process).

TypeError

Raised when a built-in operation or function is applied to an object of inappropriate

type. The associated value is a string giving details about the type mismatch.

ValueError

Raised when a built-in operation or function receives an argument that has the right

type but an inappropriate value, and the situation is not described by a more precise

exception such as IndexError.

ZeroDivisionError

Raised when the second argument of a division or modulo operation is zero. The

associated value is a string indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They

are listed here in alphabetical order.

abs(x)

Return the absolute value of a number. The argument may be a plain or long integer

or a oating point number.

apply(func, args)

The �rst argument must be a callable object (a user-de�ned or built-in function or

method, or a class object). The second argument must be a tuple, possibly empty

or a singleton. The function is called with the tuple as argument list; the number of

arguments is the same as the length of the tuple. (This is di�erent from just calling

func(args), since in that case there is always exactly one argument.)

12

chr(i)

Return a string of one character whose ascii code is the integer i , e.g., chr(97) returns

the string 'a'. This is the inverse of ord(). The argument must be in the range [0..255],

inclusive.

cmp(x, y)

Compare the two objects x and y and return an integer according to the outcome. The

return value is negative if x < y , zero if x == y and strictly positive if x > y .

coerce(x, y)

Return a tuple consisting of the two numeric arguments converted to a common type,

using the same rules as used by arithmetic operations.

compile(string, �lename, kind)

Compile the string into a code object. Code objects can be executed by exec().

The �lename argument should give the �le from which the code was read; pass e.g.

'<string>' if it wasn't read from a �le. The kind argument speci�es what kind of code

must be compiled; it can be 'exec' if string consists of a sequence of statements, or

'eval' if it consists of a single expression.

dir()

Without arguments, return the list of names in the current local symbol table. With a

module, class or class instance object as argument (or anything else that has a __dict__

attribute), returns the list of names in that object's attribute dictionary. The resulting

list is sorted. For example:

>>> import sys

>>> dir()

['sys']

>>> dir(sys)

['argv', 'exit', 'modules', 'path', 'stderr', 'stdin', 'stdout']

>>>

divmod(a, b)

Take two numbers as arguments and return a pair of integers consisting of their integer

quotient and remainder. With mixed operand types, the rules for binary arithmetic

operators apply. For plain and long integers, the result is the same as (a / b, a % b).

For oating point numbers the result is the same as (math.floor(a / b), a % b).

eval(s, globals, locals)

The arguments are a string and two optional dictionaries. The string argument is parsed

and evaluated as a Python expression (technically speaking, a condition list) using the

dictionaries as global and local name space. The string must not begin with whitespace,

nor must it contain null bytes. The return value is the result of the expression. If the

third argument is omitted it defaults to the second. If both dictionaries are omitted,

the expression is executed in the environment where eval is called. Syntax errors are

reported as exceptions. Example:

13

>>> x = 1

>>> print eval('x+1')

2

>>>

This function can also be used to execute arbitrary code objects (e.g. created by

compile()). In this case pass a code object instead of a string.

exec(s, globals, locals)

Similar to eval, but parses and executes the string as a sequence of statements. The

return value is None. The string must not begin with whitespace and must end with a

newline ('\n'). Multiple lines separated by newlines are accepted; the normal indenta-

tion rules must be obeyed. Syntax errors are reported as exceptions. Example:

>>> x = 1

>>> exec('x = x+1\n')

>>> print x

2

>>>

If a code object is passed instead of a string, this function behaves identical to eval().

execfile(�lename, globals, locals)

Similar to exec, but opens and parses a �le instead of taking its input from a string.

float(x)

Convert a number to oating point. The argument may be a plain or long integer or a

oating point number.

getattr(object, name)

The arguments are an object and a string. The string must be the name of one

of the object's attributes. The result is the value of that attribute. For example,

getattr(x, 'foobar') is equivalent to x.foobar .

hasattr(object, name)

The arguments are an object and a string. The result is 1 if the string is the

name of one of the object's attributes, 0 if not. (This is implemented by calling

getattr(object, name) and seeing whether it raises an exception or not.)

hash(object)

Return the hash value of the object (if it has one). Hash values are 32-bit integers.

They are used to quickly compare dictionary keys during a dictionary lookup. Numeric

values that compare equal have the same hash value (even if they are of di�erent types,

e.g. 1 and 1.0).

hex(x)

Convert a number to a hexadecimal string. The result is a valid Python expression.

id(object)

Return the `identity' of an object. This is an integer which is guaranteed to be unique

and constant for this object during its lifetime. (Two objects whose lifetimes are disjunct

14

may have the same id() value.) (Implementation note: this is the address of the object.)

input(prompt)

Almost equivalent to eval(raw_input(prompt)). As for raw_input(), the prompt

argument is optional. The di�erence is that a long input expression may be broken over

multiple lines using the backslash convention.

int(x)

Convert a number to a plain integer. The argument may be a plain or long integer or

a oating point number.

len(s)

Return the length (the number of items) of an object. The argument may be a sequence

(string, tuple or list) or a mapping (dictionary).

long(x)

Convert a number to a long integer. The argument may be a plain or long integer or a

oating point number.

max(s)

Return the largest item of a non-empty sequence (string, tuple or list).

min(s)

Return the smallest item of a non-empty sequence (string, tuple or list).

oct(x)

Convert a number to an octal string. The result is a valid Python expression.

open(�lename, mode)

Return a new �le object (described earlier under Built-in Types). The string arguments

are the same as for stdio's fopen(): �lename is the �le name to be opened, mode

indicates how the �le is to be opened: 'r' for reading, 'w' for writing (truncating an

existing �le), and 'a' opens it for appending. Modes 'r+', 'w+' and 'a+' open the

�le for updating, provided the underlying stdio library understands this. On systems

that di�erentiate between binary and text �les, 'b' appended to the mode opens the

�le in binary mode. If the �le cannot be opened, IOError is raised.

ord(c)

Return the ascii value of a string of one character. E.g., ord('a') returns the integer

97. This is the inverse of chr().

pow(x, y)

Return x to the power y . The arguments must have numeric types. With mixed operand

types, the rules for binary arithmetic operators apply. The e�ective operand type is

also the type of the result; if the result is not expressible in this type, the function raises

an exception; e.g., pow(2, -1) is not allowed.

range(start, end, step)

This is a versatile function to create lists containing arithmetic progressions. It is most

often used in for loops. The arguments must be plain integers. If the step argument

is omitted, it defaults to 1. If the start argument is omitted, it defaults to 0. The full

form returns a list of plain integers [start, start + step, start + 2 * step, : : :]. If

step is positive, the last element is the largest start + i * step less than end ; if step is

15

negative, the last element is the largest start + i * step greater than end . step must

not be zero. Example:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

>>> range(0)

[]

>>> range(1, 0)

[]

>>>

raw_input(prompt)

The string argument is optional; if present, it is written to standard output without

a trailing newline. The function then reads a line from input, converts it to a string

(stripping a trailing newline), and returns that. When eof is read, EOFError is raised.

Example:

>>> s = raw_input('--> ')

--> Monty Python's Flying Circus

>>> s

'Monty Python\'s Flying Circus'

>>>

reload(module)

Re-parse and re-initialize an already importedmodule . The argument must be a module

object, so it must have been successfully imported before. This is useful if you have

edited the module source �le using an external editor and want to try out the new

version without leaving the Python interpreter. Note that if a module is syntactically

correct but its initialization fails, the �rst import statement for it does not import the

name, but does create a (partially initialized) module object; to reload the module you

must �rst import it again (this will just make the partially initialized module object

available) before you can reload() it.

repr(object)

This function returns exactly the same value as `object`. It is sometimes useful to be

able to access this operation as an ordinary function.

round(x, n)

Return the oating point value x rounded to n digits after the decimal point. If n is

omitted, it defaults to zero. The result is a oating point number. Values are rounded

16

to the closest multiple of 10 to the power minus n; if two multiples are equally close,

rounding is done away from 0 (so e.g. round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr(object, name, value)

This is the counterpart of getattr. The arguments are an object, a string and an

arbitrary value. The string must be the name of one of the object's attributes. The

function assigns the value to the attribute, provided the object allows it. For example,

setattr(x, 'foobar', 123) is equivalent to x.foobar = 123.

str(object)

This function returns repr(object) unless object is a string, in which case it returns

object unchanged. It is sometimes useful to make sure that a value is a string without

surrounding it with string quotes like repr(object) does if its argument is a string.

type(object)

Return the type of an object . The return value is a type object. There is not much you

can do with type objects except compare them to other type objects; e.g., the following

checks if a variable is a string:

>>> if type(x) == type(''): print 'It is a string'

17

Chapter 3

Built-in Modules

The modules described in this section are built into the interpreter. They must be imported

using import. Some modules are not always available; it is a con�guration option to provide

them. Details are listed with the descriptions, but the best way to see if a module exists in a

particular implementation is to attempt to import it.

3.1 Built-in Module sys

This module provides access to some variables used or maintained by the interpreter and to

functions that interact strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python script. sys.argv[0] is the

script name. If no script name was passed to the Python interpreter, sys.argv is

empty.

builtin_module_names

A list of strings giving the names of all modules that are compiled into this Python

interpreter. (This information is not available in any other way | sys.modules.keys()

only lists the imported modules.)

exc_type

exc_value

exc_traceback

These three variables are not always de�ned; they are set when an exception handler

(an except clause of a try statement) is invoked. Their meaning is: exc_type gets the

exception type of the exception being handled; exc_value gets the exception parameter

(its associated value or the second argument to raise); exc_traceback gets a traceback

object which encapsulates the call stack at the point where the exception originally

occurred.

exit(n)

Exit from Python with numeric exit status n. This is implemented by raising the

SystemExit exception, so cleanup actions speci�ed by finally clauses of try statements

18

are honored, and it is possible to catch the exit attempt at an outer level.

exitfunc

This value is not actually de�ned by the module, but can be set by the user (or by

a program) to specify a clean-up action at program exit. When set, it should be a

parameterless function. This function will be called when the interpreter exits in any

way (but not when a fatal error occurs: in that case the interpreter's internal state

cannot be trusted).

last_type

last_value

last_traceback

These three variables are not always de�ned; they are set when an exception is not

handled and the interpreter prints an error message and a stack traceback. Their

intended use is to allow an interactive user to import a debugger module and engage

in post-mortem debugging without having to re-execute the command that cause the

error (which may be hard to reproduce). The meaning of the variables is the same as

that of exc_type, exc_value and exc_tracaback, respectively.

modules

Gives the list of modules that have already been loaded. This can be manipulated to

force reloading of modules and other tricks.

path

A list of strings that speci�es the search path for modules. Initialized from the environ-

ment variable PYTHONPATH, or an installation-dependent default.

ps1

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only

de�ned if the interpreter is in interactive mode. Their initial values in this case are

'>>> ' and '... '.

settrace(tracefunc)

Set the system's trace function, which allows you to implement a Python source code

debugger in Python. The standard modules pdb and wdb are such debuggers; the

di�erence is that wdb uses windows and needs STDWIN, while pdb has a line-oriented

interface not unlike dbx. See the �le `pdb.doc' in the Python library source directory

for more documentation (both about pdb and sys.trace).

setprofile(pro�lefunc)

Set the system's pro�le function, which allows you to implement a Python source code

pro�ler in Python. The system's pro�le function is called similarly to the system's trace

function (see sys.settrace), but it isn't called for each executed line of code (only on

call and return and when an exception occurs). Also, its return value is not used, so it

can just return None.

stdin

stdout

stderr

File objects corresponding to the interpreter's standard input, output and error streams.

19

sys.stdin is used for all interpreter input except for scripts but including calls to

input() and raw_input(). sys.stdout is used for the output of print and expression

statements and for the prompts of input() and raw_input(). The interpreter's own

prompts and its error messages are written to stderr. Assigning to sys.stderr has no

e�ect on the interpreter; it can be used to write error messages to stderr using print.

3.2 Built-in Module __main__

This module represents the (otherwise anonymous) scope in which the interpreter's main

program executes | commands read either from standard input or from a script �le.

3.3 Built-in Module math

This module is always available. It provides access to the mathematical functions de�ned by

the C standard. They are: acos(x), asin(x), atan(x), atan2(x, y), ceil(x), cos(x),

cosh(x), exp(x), fabs(x), floor(x), fmod(x, y), frexp(x), ldexp(x, y), log(x),

log10(x), modf(x), pow(x, y), sin(x), sinh(x), sqrt(x), tan(x), tanh(x).

Note that frexp and modf have a di�erent call/return pattern than their C equivalents: they

take a single argument and return a pair of values, rather than returning their second return

value through an `output parameter' (there is no such thing in Python).

The module also de�nes two mathematical constants: pi and e.

3.4 Built-in Module time

This module provides various time-related functions. It is always available. (On some systems,

not all functions may exist; e.g. the \milli" variants can't always be implemented.)

An explanation of some terminology and conventions is in order.

� The \epoch" is the point where the time starts. On January 1st that year, at 0 hours,

the \time since the epoch" is zero. For UNIX, the epoch is 1970. To �nd out what the

epoch is, look at the �rst element of gmtime(0).

� UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time). The

acronym UTC is not a mistake but a compromise between English and French.

� DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour

during part of the year. DST rules are magic (determined by local law) and can change

from year to year. The C library has a table containing the local rules (often it is read

from a system �le for exibility) and is the only source of True Wisdom in this respect.

� The precision of the various real-time functions may be less than suggested by the units

in which their value or argument is expressed. E.g. on most UNIX systems, the clock

20

\ticks" only every 1/50th or 1/100th of a second, and on the Mac, it ticks 60 times a

second.

Functions and data items are:

altzone

The o�set of the local DST timezone, in seconds west of the 0th meridian, if one is

de�ned. Only use this if daylight is nonzero.

asctime(tuple)

Convert a tuple representing a time as returned by gmtime() or localtime() to a 24-

character string of the following form: 'Sun Jun 20 23:21:05 1993'. Note: unlike

the C function of the same name, there is no trailing newline.

ctime(secs)

Convert a time expressed in seconds since the epoch to a string representing local time.

ctime(t) is equivalent to asctime(localtime(t)).

daylight

Nonzero if a DST timezone is de�ned.

gmtime(secs)

Convert a time expressed in seconds since the epoch to a tuple of 9 integers, in UTC:

year (e.g. 1993), month (1-12), day (1-31), hour (0-23), minute (0-59), second (0-59),

weekday (0-6, monday is 0), julian day (1-366), dst ag (always zero). Fractions of a

second are ignored. Note subtle di�erences with the C function of this name.

localtime(secs)

Like gmtime but converts to local time. The dst ag is set to 1 when DST applies to

the given time.

millisleep(msecs)

Suspend execution for the given number of milliseconds. (Obsolete, you can now use

use sleep with a oating point argument.)

millitimer()

Return the number of milliseconds of real time elapsed since some point in the past that

is �xed per execution of the python interpreter (but may change in each following run).

The return value may be negative, and it may wrap around.

mktime(tuple)

This is the inverse function of localtime. Its argument is the full 9-tuple (since the dst

ag is needed). It returns an integer.

sleep(secs)

Suspend execution for the given number of seconds. The argument may be a oating

point number to indicate a more precise sleep time.

time()

Return the time as a oating point number expressed in seconds since the epoch, in

UTC. Note that even though the time is always returned as a oating point number,

not all systems provide time with a better precision than 1 second. An alternative for

measuring precise intervals is millitimer.

21

timezone

The o�set of the local (non-DST) timezone, in seconds west of the 0th meridian (i.e.

negative in most of Western Europe, positive in the US, zero in the UK).

tzname

A tuple of two strings: the �rst is the name of the local non-DST timezone, the second

is the name of the local DST timezone. If no DST timezone is de�ned, the second string

should not be used.

3.5 Built-in Module regex

This module provides regular expression matching operations similar to those found in Emacs.

It is always available.

By default the patterns are Emacs-style regular expressions; there is a way to change the

syntax to match that of several well-known Unix utilities.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters

whose high bit is set.

Please note: There is a little-known fact about Python string literals which means that you

don't usually have to worry about doubling backslashes, even though they are used to escape

special characters in string literals as well as in regular expressions. This is because Python

doesn't remove backslashes from string literals if they are followed by an unrecognized escape

character. However , if you want to include a literal backslash in a regular expression repre-

sented as a string literal, you have to quadruple it. E.g. to extract LaTeX `\section{: : :}'

headers from a document, you can use this pattern: '\\\\section{\(.*\)}'.

The module de�nes these functions, and an exception:

match(pattern, string)

Return how many characters at the beginning of string match the regular expression

pattern . Return -1 if the string does not match the pattern (this is di�erent from a

zero-length match!).

search(pattern, string)

Return the �rst position in string that matches the regular expression pattern . Return

-1 if no position in the string matches the pattern (this is di�erent from a zero-length

match anywhere!).

compile(pattern, translate)

Compile a regular expression pattern into a regular expression object, which can be

used for matching using its match and search methods, described below. The optional

translate , if present, must be a 256-character string indicating how characters (both of

the pattern and of the strings to be matched) are translated before comparing them;

the i-th element of the string gives the translation for the character with ASCII code

i.

The sequence

22

prog = regex.compile(pat)

result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

but the version using compile() is more e�cient when multiple regular expressions are

used concurrently in a single program. (The compiled version of the last pattern passed

to regex.match() or regex.search() is cached, so programs that use only a single

regular expression at a time needn't worry about compiling regular expressions.)

set_syntax(ags)

Set the syntax to be used by future calls to compile, match and search. (Already

compiled expression objects are not a�ected.) The argument is an integer which is

the OR of several ag bits. The return value is the previous value of the syntax ags.

Names for the ags are de�ned in the standard module regex_syntax; read the �le

`regex_syntax.py' for more information.

error

Exception raised when a string passed to one of the functions here is not a valid regular

expression (e.g., unmatched parentheses) or when some other error occurs during com-

pilation or matching. (It is never an error if a string contains no match for a pattern.)

casefold

A string suitable to pass as translate argument to compile to map all upper case

characters to their lowercase equivalents.

Compiled regular expression objects support these methods:

match(string, pos)

Return how many characters at the beginning of string match the compiled regular

expression. Return -1 if the string does not match the pattern (this is di�erent from a

zero-length match!).

The optional second parameter pos gives an index in the string where the search is to

start; it defaults to 0. This is not completely equivalent to slicing the string; the '^'

pattern character matches at the real begin of the string and at positions just after a

newline, not necessarily at the index where the search is to start.

search(string, pos)

Return the �rst position in string that matches the regular expression pattern. Return

-1 if no position in the string matches the pattern (this is di�erent from a zero-length

match anywhere!).

The optional second parameter has the same meaning as for the match method.

group(index, index, ...)

This method is only valid when the last call to the match or search method found a

match. It returns one or more groups of the match. If there is a single index argument,

23

the result is a single string; if there are multiple arguments, the result is a tuple with

one item per argument. If the index is zero, the corresponding return value is the entire

matching string; if it is in the inclusive range [1..9], it is the string matching the the

corresponding parenthesized group (using the default syntax, groups are parenthesized

using (and)). If no such group exists, the corresponding result is None.

Compiled regular expressions support these data attributes:

regs

When the last call to the match or search method found a match, this is a tuple of

pairs of indices corresponding to the beginning and end of all parenthesized groups in

the pattern. Indices are relative to the string argument passed to match or search. The

0-th tuple gives the beginning and end or the whole pattern. When the last match or

search failed, this is None.

last

When the last call to the match or search method found a match, this is the string

argument passed to that method. When the last match or search failed, this is None.

translate

This is the value of the translate argument to regex.compile that created this regular

expression object. If the translate argument was omitted in the regex.compile call,

this is None.

3.6 Built-in Module marshal

This module contains functions that can read and write Python values in a binary format.

The format is speci�c to Python, but independent of machine architecture issues (e.g., you

can write a Python value to a �le on a VAX, transport the �le to a Mac, and read it back

there). Details of the format not explained here; read the source if you're interested.

Not all Python object types are supported; in general, only objects whose value is independent

from a particular invocation of Python can be written and read by this module. The following

types are supported: None, integers, long integers, oating point numbers, strings, tuples, lists,

dictionaries, and code objects, where it should be understood that tuples, lists and dictionaries

are only supported as long as the values contained therein are themselves supported; and

recursive lists and dictionaries should not be written (they will cause an in�nite loop).

There are functions that read/write �les as well as functions operating on strings.

The module de�nes these functions:

dump(value, �le)

Write the value on the open �le. The value must be a supported type. The �le must

be an open �le object such as sys.stdout or returned by open() or posix.popen().

If the value has an unsupported type, garbage is written which cannot be read back by

load().

load(�le)

Read one value from the open �le and return it. If no valid value is read, raise EOFError,

24

ValueError or TypeError. The �le must be an open �le object.

dumps(value)

Return the string that would be written to a �le by dump(value, file). The value

must be a supported type.

loads(string)

Convert the string to a value. If no valid value is found, raise EOFError, ValueError

or TypeError. Extra characters in the string are ignored.

3.7 Built-in module struct

This module performs conversions between Python values and C structs represented as Python

strings. It uses format strings (explained below) as a compact descriptions of the lay-out of

the C structs and the intended conversion to/from Python values.

The module de�nes the following exception and functions:

error

Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, v1, v2, : : : ;)

Return a string containing the values v1, v2, : : : packed according to the given format.

The arguments must match the values required by the format exactly.

unpack(fmt, string)

Unpack the string (presumably packed by pack(fmt, : : :)) according to the given for-

mat. The result is a tuple even if it contains exactly one item. The string must

contain exactly the amount of data required by the format (i.e. len(string) must equal

calcsize(fmt)).

calcsize(fmt)

Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values

should be obvious given their types:

Format C Python

`x' pad byte no value

`c' char string of length 1

`b' signed char integer

`h' short integer

`i' int integer

`l' long integer

`f' oat oat

`d' double oat

A format character may be preceded by an integral repeat count; e.g. the format string '4h'

means exactly the same as 'hhhh'.

25

C numbers are represented in the machine's native format and byte order, and properly

aligned by skipping pad bytes if necessary (according to the rules used by the C compiler).

Examples (all on a big-endian machine):

pack('hhl', 1, 2, 3) == '\000\001\000\002\000\000\000\003'

unpack('hhl', '\000\001\000\002\000\000\000\003') == (1, 2, 3)

calcsize('hhl') == 8

Hint: to align the end of a structure to the alignment requirement of a particular type, end

the format with the code for that type with a repeat count of zero, e.g. the format 'llh0l'

speci�es two pad bytes at the end, assuming longs are aligned on 4-byte boundaries.

(More format characters are planned, e.g. 's' for character arrays, upper case for unsigned

variants, and a way to specify the byte order, which is useful for [de]constructing network

packets and reading/writing portable binary �le formats like TIFF and AIFF.)

3.8 Built-in module array

This module de�nes a new object type which can e�ciently represent an array of basic values:

characters, integers, oating point numbers. Arrays are sequence types and behave very much

like lists, except that the type of objects stored in them is constrained. The type is speci�ed

at object creation time by using a type code, which is a single character. The following type

codes are de�ned:

Typecode Type Minimal size in bytes

'c' character 1

'b' signed integer 1

'h' signed integer 2

'l' signed integer 4

'f' oating point 4

'd' oating point 8

The actual representation of values is determined by the machine architecture (strictly spoken,

by the C implementation).

The module de�nes the following function:

array(typecode, initializer)

Return a new array whose items are restricted by typecode , and initialized from the

optional initializer value, which must be a list or a string. The list or string is passed to

the new array's fromlist() or fromstring() method (see below) to add initial items

to the array.

Array objects support the following data items and methods:

typecode

The typecode character used to create the array.

26

itemsize

The length in bytes of one array item in the internal representation.

append(x)

Append a new item with value x to the end of the array.

insert(i, x)

Insert a new item with value x in the array before position i .

read(f , n)

Read n items (as machine values) from the �le object f and append them to the end

of the array. If less than n items are available, EOFError is raised, but the items that

were available are still inserted into the array.

write(f)

Write all items (as machine values) to the �le object f .

fromstring(s)

Appends items from the string, interpreting the string as an array of machine values

(i.e. as if it had been read from a �le using the read() method).

tostring()

Convert the array to an array of machine values and return the string representation

(the same sequence of bytes that would be written to a �le by the write() method.)

fromlist(list)

Appends items from the list. This is equivalent to for x in list: a.append(x) except

that if there is a type error, the array is unchanged.

tolist()

Convert the array to an ordinary list with the same items.

When an array object is printed or converted to a string, it is represented as

array(typecode, initializer). The initializer is omitted if the array is empty, otherwise it is

a string if the typecode is 'c', otherwise it is a list of numbers. The string is guaranteed to

be able to be converted back to an array with the same type and value using reverse quotes

(``). Examples:

array('l')

array('c', 'hello world')

array('l', [1, 2, 3, 4, 5])

array('d', [1.0, 2.0, 3.14])

27

Chapter 4

Standard Modules

The following standard modules are de�ned. They are available in one of the directories in

the default module search path (try printing sys.path to �nd out the default search path.)

4.1 Standard Module string

This module de�nes some constants useful for checking character classes, some exceptions,

and some useful string functions. The constants are:

digits

The string '0123456789'.

hexdigits

The string '0123456789abcdefABCDEF'.

letters

The concatenation of the strings lowercase and uppercase described below.

lowercase

A string containing all the characters that are considered lowercase letters. On most

systems this is the string 'abcdefghijklmnopqrstuvwxyz'. Do not change its de�nition

{ the e�ect on the routines upper and swapcase is unde�ned.

octdigits

The string '01234567'.

uppercase

A string containing all the characters that are considered uppercase letters. On most

systems this is the string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. Do not change its de�nition

{ the e�ect on the routines lower and swapcase is unde�ned.

whitespace

A string containing all characters that are considered whitespace. On most systems this

includes the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not

change its de�nition { the e�ect on the routines strip and split is unde�ned.

The exceptions are:

28

atoi_error

Exception raised by atoi when a non-numeric string argument is detected. The excep-

tion argument is the o�ending string.

index_error

Exception raised by index when sub is not found. The argument are the o�ending

arguments to index: (s, sub).

The functions are:

atoi(s)

Converts a string to a number. The string must consist of one or more digits, optionally

preceded by a sign (`+' or `-').

expandtabs(s, tabsize)

Expand tabs in a string, i.e. replace them by one or more spaces, depending on the

current column and the given tab size. The column number is reset to zero after each

newline occurring in the string. This doesn't understand other non-printing characters

or escape sequences.

find(s, sub, i)

Return the lowest index in s not smaller than i where the substring sub is found. Return

-1 when sub does not occur as a substring of s with index at least i . If i is omitted, it

defaults to 0.

index(s, sub, i)

Like index but raise index_error when the substring is not found.

lower(s)

Convert letters to lower case.

split(s)

Returns a list of the whitespace-delimited words of the string s .

splitfields(s, sep)

Returns a list containing the �elds of the string s, using the string sep as a separator.

The list will have one more items than the number of non-overlapping occurrences

of the separator in the string. Thus, string.splitfields(s, ' ') is not the same

as string.split(s), as the latter only returns non-empty words. As a special case,

splitfields(s, '') returns [s], for any string s . (See also regsub.split().)

join(words)

Concatenate a list or tuple of words with intervening spaces.

joinfields(words, sep)

Concatenate a list or tuple of words with intervening separators. It is always true that

string.joinfields(string.splitfields(t, sep), sep) equals t .

strip(s)

Removes leading and trailing whitespace from the string s .

swapcase(s)

Converts lower case letters to upper case and vice versa.

29

upper(s)

Convert letters to upper case.

ljust(s, width)

rjust(s, width)

center(s, width)

These functions respectively left-justify, right-justify and center a string in a �eld of

given width. They return a string that is at least width characters wide, created by

padding the string s with spaces until the given width on the right, left or both sides.

The string is never truncated.

zfill(s, width)

Pad a numeric string on the left with zero digits until the given width is reached. Strings

starting with a sign are handled correctly.

4.2 Standard Module rand

This module implements a pseudo-random number generator with an interface similar to

rand() in C. It de�nes the following functions:

rand()

Returns an integer random number in the range [0 ... 32768).

choice(s)

Returns a random element from the sequence (string, tuple or list) s .

srand(seed)

Initializes the random number generator with the given integral seed. When the module

is �rst imported, the random number is initialized with the current time.

4.3 Standard Module whrandom

This module implements a Wichmann-Hill pseudo-random number generator. It de�nes the

following functions:

random()

Returns the next random oating point number in the range [0.0 ... 1.0).

seed(x, y, z)

Initializes the random number generator from the integers x , y and z . When the module

is �rst imported, the random number is initialized using values derived from the current

time.

4.4 Standard Module regsub

This module de�nes a number of functions useful for working with regular expressions (see

built-in module regex).

30

sub(pat, repl, str)

Replace the �rst occurrence of pattern pat in string str by replacement repl . If the

pattern isn't found, the string is returned unchanged. The pattern may be a string

or an already compiled pattern. The replacement may contain references `\digit ' to

subpatterns and escaped backslashes.

gsub(pat, repl, str)

Replace all (non-overlapping) occurrences of pattern pat in string str by replacement

repl . The same rules as for sub() apply. Empty matches for the pattern are replaced

only when not adjacent to a previous match, so e.g. gsub('', '-', 'abc') returns

'-a-b-c-'.

split(str, pat)

Split the string str in �elds separated by delimiters matching the pattern pat , and

return a list containing the �elds. Only non-empty matches for the pattern are consid-

ered, so e.g. split('a:b', ':*') returns ['a', 'b'] and split('abc', '') returns

['abc'].

4.5 Standard Module os

This module provides a more portable way of using operating system (OS) dependent func-

tionality than importing an OS dependent built-in module like posix.

When the optional built-in module posix is available, this module exports the same functions

and data as posix; otherwise, it searches for an OS dependent built-in module like mac and

exports the same functions and data as found there. The design of all Python's built-in OS

dependen modules is such that as long as the same functionality is available, it uses the same

interface; e.g., the function os.stat(�le) returns stat info about a �le in a format compatible

with the POSIX interface.

Extensions peculiar to a particular OS are also available through the os module, but using

them is of course a threat to portability!

Note that after the �rst time os is imported, there is no performance penalty in using functions

from os instead of directly from the OS dependent built-in module, so there should be no

reason not to use os!

In addition to whatever the correct OS dependent module exports, the following variables are

always exported by os:

name

The name of the OS dependent module imported, e.g. 'posix' or 'mac'.

path

The corresponding OS dependent standard module for pathname operations, e.g.,

posixpath or macpath. Thus, (given the proper imports), os.path.split(�le) is

equivalent to but more portable than posixpath.split(�le).

curdir

The constant string used by the OS to refer to the current directory, e.g. '.' for POSIX

or ':' for the Mac.

31

pardir

The constant string used by the OS to refer to the parent directory, e.g. '..' for POSIX

or '::' for the Mac.

sep

The character used by the OS to separate pathname components, e.g. '/' for POSIX

or ':' for the Mac. Note that knowing this is not su�cient to be able to parse or

concatenate pathnames|better use os.path.split() and os.path.join()|but it is

occasionally useful.

32

Chapter 5

MOST OPERATING SYSTEMS

5.1 Built-in Module posix

This module provides access to operating system functionality that is standardized by the

C Standard and the POSIX standard (a thinly diguised Unix interface). It is available in

all Python versions except on the Macintosh; the MS-DOS version does not support certain

functions. The descriptions below are very terse; refer to the corresponding Unix manual

entry for more information.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors

reported by the system calls raise posix.error, described below.

Module posix de�nes the following data items:

environ

A dictionary representing the string environment at the time the interpreter was started.

(Modifying this dictionary does not a�ect the string environment of the interpreter.) For

example, posix.environ['HOME'] is the pathname of your home directory, equivalent

to getenv("HOME") in C.

error

This exception is raised when an POSIX function returns a POSIX-related error (e.g.,

not for illegal argument types). Its string value is 'posix.error'. The accompanying

value is a pair containing the numeric error code from errno and the corresponding

string, as would be printed by the C function perror().

It de�nes the following functions:

chdir(path)

Change the current working directory to path .

chmod(path, mode)

Change the mode of path to the numeric mode .

close(fd)

Close �le descriptor fd .

dup(fd)

33

Return a duplicate of �le descriptor fd .

dup2(fd, fd2)

Duplicate �le descriptor fd to fd2 , closing the latter �rst if necessary. Return None.

_exit(n)

Exit to the system with status n, without calling cleanup handlers, ushing stdio bu�ers,

etc. (Not on MS-DOS.)

Note: the standard way to exit is sys.exit(n). posix.exit() should normally only

be used in the child process after a fork().

exec(path, args)

Execute the executable path with argument list args , replacing the current process (i.e.,

the Python interpreter). The argument list may be a tuple or list of strings. (Not on

MS-DOS.)

fork()

Fork a child process. Return 0 in the child, the child's process id in the parent. (Not

on MS-DOS.)

fstat(fd)

Return status for �le descriptor fd , like stat().

getcwd()

Return a string representing the current working directory.

getegid()

Return the current process's e�ective group id. (Not on MS-DOS.)

geteuid()

Return the current process's e�ective user id. (Not on MS-DOS.)

getgid()

Return the current process's group id. (Not on MS-DOS.)

getpid()

Return the current process id. (Not on MS-DOS.)

getppid()

Return the parent's process id. (Not on MS-DOS.)

getuid()

Return the current process's user id. (Not on MS-DOS.)

kill(pid, sig)

Kill the process pid with signal sig . (Not on MS-DOS.)

link(src, dst)

Create a hard link pointing to src named dst . (Not on MS-DOS.)

listdir(path)

Return a list containing the names of the entries in the directory. The list is in arbitrary

order. It includes the special entries '.' and '..' if they are present in the directory.

lseek(fd, pos, how)

Set the current position of �le descriptor fd to position pos , modi�ed by how : 0 to

34

set the position relative to the beginning of the �le; 1 to set it relative to the current

position; 2 to set it relative to the end of the �le.

lstat(path)

Like stat(), but do not follow symbolic links. (On systems without symbolic links, this

is identical to posix.stat.)

mkdir(path, mode)

Create a directory named path with numeric mode mode .

nice(increment)

Add incr to the process' \niceness". Return the new niceness. (Not on MS-DOS.)

open(�le, ags, mode)

Open the �le �le and set various ags according to ags and possibly its mode according

to mode . Return the �le descriptor for the newly opened �le.

pipe()

Create a pipe. Return a pair of �le descriptors (r, w) usable for reading and writing,

respectively. (Not on MS-DOS.)

popen(command, mode)

Open a pipe to or from command . The return value is an open �le object connected to

the pipe, which can be read or written depending on whether mode is 'r' or 'w'. (Not

on MS-DOS.)

read(fd, n)

Read at most n bytes from �le descriptor fd . Return a string containing the bytes read.

readlink(path)

Return a string representing the path to which the symbolic link points. (On systems

without symbolic links, this always raises posix.error.)

rename(src, dst)

Rename the �le or directory src to dst .

rmdir(path)

Remove the directory path .

stat(path)

Perform a stat system call on the given path. The return value is a tuple of at least

10 integers giving the most important (and portable) members of the stat structure, in

the order st_mode, st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime,

st_mtime, st_ctime. More items may be added at the end by some implementations.

(On MS-DOS, some items are �lled with dummy values.)

Note: The standard module stat de�nes functions and constants that are useful for

extracting information from a stat structure.

symlink(src, dst)

Create a symbolic link pointing to src named dst . (On systems without symbolic links,

this always raises posix.error.)

system(command)

Execute the command (a string) in a subshell. This is implemented by calling the Stan-

35

dard C function system(), and has the same limitations. Changes to posix.environ,

sys.stdin etc. are not reected in the environment of the executed command. The

return value is the exit status of the process as returned by Standard C system().

times()

Return a 4-tuple of oating point numbers indicating accumulated CPU times, in sec-

onds. The items are: user time, system time, children's user time, and children's system

time, in that order. See the Unix manual page times(2). (Not on MS-DOS.)

umask(mask)

Set the current numeric umask and returns the previous umask. (Not on MS-DOS.)

uname()

Return a 5-tuple containing information identifying the current operating system. The

tuple contains 5 strings: (sysname, nodename, release, version, machine). Some

systems truncate the nodename to 8 characters or to the leading component; an better

way to get the hostname is socket.gethostname(). (Not on MS-DOS, nor on older

Unix systems.)

unlink(path)

Unlink path .

utime(path, (atime, mtime))

Set the access and modi�ed time of the �le to the given values. (The second argument

is a tuple of two items.)

wait()

Wait for completion of a child process, and return a tuple containing its pid and exit

status indication (encoded as by Unix). (Not on MS-DOS.)

waitpid(pid, options)

Wait for completion of a child process given by proces id, and return a tuple containing

its pid and exit status indication (encoded as by Unix). The semantics of the call are

a�ected by the value of the integer options, which should be 0 for normal operation.

(If the system does not support waitpid(), this always raises posix.error. Not on

MS-DOS.)

write(fd, str)

Write the string str to �le descriptor fd. Return the number of bytes actually written.

5.2 Standard Module posixpath

This module implements some useful functions on POSIX pathnames.

basename(p)

Return the base name of pathname p. This is the second half of the pair returned by

posixpath.split(p).

commonprefix(list)

Return the longest string that is a pre�x of all strings in list . If list is empty, return

the empty string ('').

36

exists(p)

Return true if p refers to an existing path.

expanduser(p)

Return the argument with an initial component of `~' or `~user ' replaced by that user 's

home directory. An initial `~' is replaced by the environment variable $HOME; an initial

`~user ' is looked up in the password directory through the built-in module pwd. If

the expansion fails, or if the path does not begin with a tilde, the path is returned

unchanged.

isabs(p)

Return true if p is an absolute pathname (begins with a slash).

isfile(p)

Return true if p is an existing regular �le. This follows symbolic links, so both islink()

and is�le() can be true for the same path.

isdir(p)

Return true if p is an existing directory. This follows symbolic links, so both islink()

and isdir() can be true for the same path.

islink(p)

Return true if p refers to a directory entry that is a symbolic link. Always false if

symbolic links are not supported.

ismount(p)

Return true if p is a mount point. (This currently checks whether p/.. is on a di�erent

device as p or whether p/.. and p point to the same i-node on the same device | is

this test correct for all Unix and POSIX variants?)

join(p, q)

Join the paths p and q intelligently: If q is an absolute path, the return value is q .

Otherwise, the concatenation of p and q is returned, with a slash ('/') inserted unless

p is empty or ends in a slash.

normcase(p)

Normalize the case of a pathname. This returns the path unchanged; however, a similar

function in macpath converts upper case to lower case.

samefile(p, q)

Return true if both pathname arguments refer to the same �le or directory (as indicated

by device number and i-node number). Raise an exception if a stat call on either

pathname fails.

split(p)

Split the pathname p in a pair (head, tail), where tail is the last pathname component

and head is everything leading up to that. If p ends in a slash (except if it is the

root), the trailing slash is removed and the operation applied to the result; otherwise,

join(head, tail) equals p. The tail part never contains a slash. Some boundary cases:

if p is the root, head equals p and tail is empty; if p is empty, both head and tail are

empty; if p contains no slash, head is empty and tail equals p.

37

splitext(p)

Split the pathname p in a pair (root, ext) such that root + ext == p, the last com-

ponent of root contains no periods, and ext is empty or begins with a period.

walk(p, visit, arg)

Calls the function visit with arguments (arg, dirname, names) for each directory in

the directory tree rooted at p (including p itself, if it is a directory). The argument

dirname speci�es the visited directory, the argument names lists the �les in the directory

(gotten from posix.listdir(dirname)). The visit function may modify names to

inuence the set of directories visited below dirname , e.g., to avoid visiting certain

parts of the tree. (The object referred to by names must be modi�ed in place, using

del or slice assignment.)

5.3 Standard Module getopt

This module helps scripts to parse the command line arguments in sys.argv. It

uses the same conventions as the Unix getopt() function. It de�nes the function

getopt.getopt(args, options) and the exception getopt.error.

The �rst argument to getopt() is the argument list passed to the script with its �rst element

chopped o� (i.e., sys.argv[1:]). The second argument is the string of option letters that the

script wants to recognize, with options that require an argument followed by a colon (i.e., the

same format that Unix getopt() uses). The return value consists of two elements: the �rst

is a list of option-and-value pairs; the second is the list of program arguments left after the

option list was stripped (this is a trailing slice of the �rst argument). Each option-and-value

pair returned has the option as its �rst element, pre�xed with a hyphen (e.g., '-x'), and the

option argument as its second element, or an empty string if the option has no argument. The

options occur in the list in the same order in which they were found, thus allowing multiple

occurrences. Example:

>>> import getopt, string

>>> args = string.split('-a -b -cfoo -d bar a1 a2')

>>> args

['-a', '-b', '-cfoo', '-d', 'bar', 'a1', 'a2']

>>> optlist, args = getopt.getopt(args, 'abc:d:')

>>> optlist

[('-a', ''), ('-b', ''), ('-c', 'foo'), ('-d', 'bar')]

>>> args

['a1', 'a2']

>>>

The exception getopt.error = 'getopt error' is raised when an unrecognized option is

found in the argument list or when an option requiring an argument is given none. The

argument to the exception is a string indicating the cause of the error.

38

Chapter 6

UNIX ONLY

6.1 Built-in Module pwd

This module provides access to the Unix password database. It is available on all Unix

versions.

Password database entries are reported as 7-tuples containing the following items from

the password database (see `<pwd.h>'), in order: pw_name, pw_passwd, pw_uid, pw_gid,

pw_gecos, pw_dir, pw_shell. The uid and gid items are integers, all others are strings. An

exception is raised if the entry asked for cannot be found.

It de�nes the following items:

getpwuid(uid)

Return the password database entry for the given numeric user ID.

getpwnam(name)

Return the password database entry for the given user name.

getpwall()

Return a list of all available password database entries, in arbitrary order.

6.2 Built-in Module grp

This module provides access to the Unix group database. It is available on all Unix versions.

Group database entries are reported as 4-tuples containing the following items from the

group database (see `<grp.h>'), in order: gr_name, gr_passwd, gr_gid, gr_mem. The gid is

an integer, name and password are strings, and the member list is a list of strings. (Note that

most users are not explicitly listed as members of the group(s) they are in.) An exception is

raised if the entry asked for cannot be found.

It de�nes the following items:

getgrgid(gid)

Return the group database entry for the given numeric group ID.

39

getgrnam(name)

Return the group database entry for the given group name.

getgrall()

Return a list of all available group entries entries, in arbitrary order.

6.3 Built-in Module socket

This module provides access to the BSD socket interface. It is available on Unix systems that

support this interface.

For an introduction to socket programming (in C), see the following papers: An Introductory

4.3BSD Interprocess Communication Tutorial , by Stuart Sechrest and An Advanced 4.3BSD

Interprocess Communication Tutorial , by Samuel J. Le�er et al, both in the Unix Program-

mer's Manual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The Unix manual

pages for the various socket-related system calls also a valuable source of information on the

details of socket semantics.

The Python interface is a straightforward transliteration of the Unix system call and library

interface for sockets to Python's object-oriented style: the socket() function returns a socket

object whose methods implement the various socket system calls. Parameter types are some-

what higer-level than in the C interface: as for read() and write() operations on Python

�les, bu�er allocation on receive operations is automatic, and bu�er length is implicit on send

operations.

Socket addresses are represented as a single string for the AF_UNIX address family and as

a pair (host, port) for the AF_INET address family, where host is a string representing ei-

ther a hostname in Internet domain notation like 'daring.cwi.nl' or an IP address like

'100.50.200.5', and port is an integral port number. Other address families are currently

not supported. The address format required by a particular socket object is automatically

selected based on the address family speci�ed when the socket object was created.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-

memory conditions can be raised; errors related to socket or address semantics raise the error

socket.error.

Not all socket operations are currently implemented; there are no provisions for asyn-

chronous or non-blocking I/O (but see avail(), and some of the lesser-used primitives such

as getpeername() are not provided.

The module socket exports the following constants and functions:

error

This exception is raised for socket- or address-related errors. The accompanying value

is either a string telling what went wrong or a pair (errno, string) representing an

error returned by a system call, similar to the value accompanying posix.error.

AF_UNIX

AF_INET

These constants represent the address (and protocol) families, used for the �rst argu-

ment to socket().

40

SOCK_STREAM

SOCK_DGRAM

These constants represent the socket types, used for the second argument to socket().

(There are other types, but only SOCK_STREAM and SOCK_DGRAM appear to be generally

useful.)

gethostbyname(hostname)

Translate a host name to IP address format. The IP address is returned as a string,

e.g., '100.50.200.5'. If the host name is an IP address itself it is returned unchanged.

getservbyname(servicename, protocolname)

Translate an Internet service name and protocol name to a port number for that service.

The protocol name should be 'tcp' or 'udp'.

socket(family, type, proto)

Create a new socket using the given address family, socket type and protocol num-

ber. The address family should be AF_INET or AF_UNIX. The socket type should be

SOCK_STREAM, SOCK_DGRAM or perhaps one of the other `SOCK_' constants. The protocol

number is usually zero and may be omitted in that case.

fromfd(fd, family, type, proto)

Build a socket object from an existing �le descriptor (an integer as returned by a �le

object's fileno method). Address family, socket type and protocol number are as for

the socket function above. The �le descriptor should refer to a socket, but this is not

checked | subsequent operations on the object may fail if the �le descriptor is invalid.

This function is rarely needed, but can be used to get or set socket options on a socket

passed to a program as standard input or output (e.g. a server started by the Unix

inet daemon).

6.3.1 Socket Object Methods

Socket objects have the following methods. Except for makefile() these correspond to Unix

system calls applicable to sockets.

accept()

Accept a connection. The socket must be bound to an address and listening for connec-

tions. The return value is a pair (conn, address) where conn is a new socket object

usable to send and receive data on the connection, and address is the address bound to

the socket on the other end of the connection.

avail()

Return true (nonzero) if at least one byte of data can be received from the socket without

blocking, false (zero) if not. There is no indication of how many bytes are available.

(This function is obsolete | see module select for a more general solution.)

bind(address)

Bind the socket to an address. The socket must not already be bound.

close()

Close the socket. All future operations on the socket object will fail. The remote end

will receive no more data (after queued data is ushed). Sockets are automatically

41

closed when they are garbage-collected.

connect(address)

Connect to a remote socket.

fileno()

Return the socket's �le descriptor (a small integer). This is useful with select.

getpeername()

Return the remote address to which the socket is connected. This is useful to �nd out

the port number of a remote IP socket, for instance.

getsockname()

Return the socket's own address. This is useful to �nd out the port number of an IP

socket, for instance.

getsockopt(level, optname, buen)

Return the value of the given socket option (see the Unix man page getsockopt(2)).

The needed symbolic constants are de�ned in module SOCKET. If the optional third

argument is absent, an integer option is assumed and its integer value is returned by

the function. If buen is present, it speci�es the maximum length of the bu�er used

to receive the option in, and this bu�er is returned as a string. It's up to the caller to

decode the contents of the bu�er (see the optional built-in module struct for a way to

decode C structures encoded as strings).

listen(backlog)

Listen for connections made to the socket. The argument (in the range 0-5) speci�es

the maximum number of queued connections.

makefile(mode)

Return a �le object associated with the socket. (File objects were described earlier under

Built-in Types.) The �le object references a dupped version of the socket �le descriptor,

so the �le object and socket object may be closed or garbage-collected independently.

recv(bufsize, ags)

Receive data from the socket. The return value is a string representing the data received.

The maximum amount of data to be received at once is speci�ed by bufsize. See the

Unix manual page for the meaning of the optional argument ags ; it defaults to zero.

recvfrom(bufsize)

Receive data from the socket. The return value is a pair (string, address) where string

is a string representing the data received and address is the address of the socket sending

the data.

send(string)

Send data to the socket. The socket must be connected to a remote socket.

sendto(string, address)

Send data to the socket. The socket should not be connected to a remote socket, since

the destination socket is speci�ed by address.

setsockopt(level, optname, value)

Set the value of the given socket option (see the Unix man page setsockopt(2)). The

42

needed symbolic constants are de�ned in module SOCKET. The value can be an integer

or a string representing a bu�er. In the latter case it is up to the caller to ensure that

the string contains the proper bits (see the optional built-in module struct for a way

to encode C structures as strings).

shutdown(how)

Shut down one or both halves of the connection. If how is 0, further receives are

disallowed. If how is 1, further sends are disallowed. If how is 2, further sends and

receives are disallowed.

Note that there are no methods read() or write(); use recv() and send() without ags

argument instead.

6.3.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all

data that it receives back (servicing only one client), and a client using it. Note that a server

must perform the sequence socket, bind, listen, accept (possibly repeating the accept to

service more than one client), while a client only needs the sequence socket, connect. Also

note that the server does not send/receive on the socket it is listening on but on the new

socket returned by accept.

Echo server program

from socket import *

HOST = '' # Symbolic name meaning the local host

PORT = 50007 # Arbitrary non-privileged server

s = socket(AF_INET, SOCK_STREAM)

s.bind(HOST, PORT)

s.listen(0)

conn, addr = s.accept()

print 'Connected by', addr

while 1:

data = conn.recv(1024)

if not data: break

conn.send(data)

conn.close()

43

Echo client program

from socket import *

HOST = 'daring.cwi.nl' # The remote host

PORT = 50007 # The same port as used by the server

s = socket(AF_INET, SOCK_STREAM)

s.connect(HOST, PORT)

s.send('Hello, world')

data = s.recv(1024)

s.close()

print 'Received', `data`

6.4 Built-in module select

This module provides access to the function select available in most Unix versions. It

de�nes the following:

error

The exception raised when an error occurs. The accompanying value is a pair containing

the numeric error code from errno and the corresponding string, as would be printed

by the C function perror().

select(iwtd, owtd, ewtd, timeout)

This is a straightforward interface to the Unix select() system call. The �rst three

arguments are lists of `waitable objects': either integers representing Unix �le descrip-

tors or objects with a parameterless method named fileno() returning such an integer.

The three lists of waitable objects are for input, output and `exceptional conditions',

respectively. Empty lists are allowed. The optional last argument is a time-out spec-

i�ed as a oating point number in seconds. When the timeout argument is omitted

the function blocks until at least one �le descriptor is ready. A time-out value of zero

speci�es a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the �rst three

arguments. When the time-out is reached without a �le descriptor becoming ready,

three empty lists are returned.

Amongst the acceptable object types in the lists are Python �le objects (e.g.

sys.stdin, or objects returned by open() or posix.popen()), socket objects returned

by socket.socket(), and the module stdwin which happens to de�ne a function

fileno() for just this purpose. You may also de�ne a wrapper class yourself, as long

as it has an appropriate fileno() method (that really returns a Unix �le descriptor,

not just a random integer).

6.5 Built-in Module dbm

Dbm provides python programs with an interface to the unix ndbm database library. Dbm

objects are of the mapping type, so they can be handled just like objects of the built-in

44

dictionary type, except that keys and values are always strings, and printing a dbm object

doesn't print the keys and values.

The module de�nes the following constant and functions:

error

Raised on dbm-speci�c errors, such as I/O errors. KeyError is raised for general map-

ping errors like specifying an incorrect key.

open(�lename, rwmode, �lemode)

Open a dbm database and return a mapping object. �lename is the name of the

database �le (without the `.dir' or `.pag' extensions), rwmode is 'r', 'w' or 'rw' as

for open, and �lemode is the unix mode of the �le, used only when the database has to

be created.

6.6 Built-in Module thread

This module provides low-level primitives for working with multiple threads (a.k.a. light-

weight processes or tasks) | multiple threads of control sharing their global data space. For

synchronization, simple locks (a.k.a. mutexes or binary semaphores) are provided.

The module is optional and supported on SGI and Sun Sparc systems only.

It de�nes the following constant and functions:

error

Raised on thread-speci�c errors.

start_new_thread(func, arg)

Start a new thread. The thread executes the function func with the argument list arg

(which must be a tuple). When the function returns, the thread silently exits. When

the function raises terminates with an unhandled exception, a stack trace is printed and

then the thread exits (but other threads continue to run).

exit_thread()

Exit the current thread silently. Other threads continue to run. Caveat: code in

pending finally clauses is not executed.

exit_prog(status)

Exit all threads and report the value of the integer argument status as the exit status

of the entire program. Caveat: code in pending finally clauses, in this thread or in

other threads, is not executed.

allocate_lock()

Return a new lock object. Methods of locks are described below. The lock is initially

unlocked.

Lock objects have the following methods:

acquire(waitag)

Without the optional argument, this method acquires the lock unconditionally, if nec-

essary waiting until it is released by another thread (only one thread at a time can

45

acquire a lock | that's their reason for existence), and returns None. If the integer

waitag argument is present, the action depends on its value: if it is zero, the lock is

only acquired if it can be acquired immediately without waiting, while if it is nonzero,

the lock is acquired unconditionally as before. If an argument is present, the return

value is 1 if the lock is acquired successfully, 0 if not.

release()

Releases the lock. The lock must have been acquired earlier, but not necessarily by the

same thread.

locked()

Return the status of the lock: 1 if it has been acquired by some thread, 0 if not.

Caveats:

� Threads interact strangely with interrupts: the KeyboardInterrupt exception will be

received by an arbitrary thread.

� Calling sys.exit(status) or executing raise SystemExit, status is almost equivalent

to calling thread.exit_prog(status), except that the former ways of exiting the entire

program do honor finally clauses in the current thread (but not in other threads).

� Not all built-in functions that may block waiting for I/O allow other threads to run,

although the most popular ones (sleep, read, select) work as expected.

46

Chapter 7

AMOEBA ONLY

7.1 Built-in Module amoeba

This module provides some object types and operations useful for Amoeba applications. It is

only available on systems that support Amoeba operations. RPC errors and other Amoeba

errors are reported as the exception amoeba.error = 'amoeba.error'.

The module amoeba de�nes the following items:

name_append(path, cap)

Stores a capability in the Amoeba directory tree. Arguments are the pathname (a

string) and the capability (a capability object as returned by name_lookup()).

name_delete(path)

Deletes a capability from the Amoeba directory tree. Argument is the pathname.

name_lookup(path)

Looks up a capability. Argument is the pathname. Returns a capability object, to

which various interesting operations apply, described below.

name_replace(path, cap)

Replaces a capability in the Amoeba directory tree. Arguments are the pathname

and the new capability. (This di�ers from name_append() in the behavior when the

pathname already exists: name_append() �nds this an error while name_replace()

allows it, as its name suggests.)

capv

A table representing the capability environment at the time the interpreter was started.

(Alas, modifying this table does not a�ect the capability environment of the interpreter.)

For example, amoeba.capv['ROOT'] is the capability of your root directory, similar to

getcap("ROOT") in C.

error

The exception raised when an Amoeba function returns an error. The value accompa-

nying this exception is a pair containing the numeric error code and the corresponding

string, as returned by the C function err_why().

47

timeout(msecs)

Sets the transaction timeout, in milliseconds. Returns the previous timeout. Initially,

the timeout is set to 2 seconds by the Python interpreter.

7.1.1 Capability Operations

Capabilities are written in a convenient ASCII format, also used by the Amoeba utilities

c2a(U) and a2c(U). For example:

>>> amoeba.name_lookup('/profile/cap')

aa:1c:95:52:6a:fa/14(ff)/8e:ba:5b:8:11:1a

>>>

The following methods are de�ned for capability objects.

dir_list()

Returns a list of the names of the entries in an Amoeba directory.

b_read(o�set, maxsize)

Reads (at most) maxsize bytes from a bullet �le at o�set o�set. The data is returned

as a string. EOF is reported as an empty string.

b_size()

Returns the size of a bullet �le.

dir_append()

dir_delete()

dir_lookup()

dir_replace()

Like the corresponding `name_'* functions, but with a path relative to the capability.

(For paths beginning with a slash the capability is ignored, since this is the de�ned

semantics for Amoeba.)

std_info()

Returns the standard info string of the object.

tod_gettime()

Returns the time (in seconds since the Epoch, in UCT, as for POSIX) from a time

server.

tod_settime(t)

Sets the time kept by a time server.

48

Chapter 8

MACINTOSH ONLY

The following modules are available on the Apple Macintosh only.

8.1 Built-in module mac

This module provides a subset of the operating system dependent functionality provided by

the optional built-in module posix. It is best accessed through the more portable standard

module os.

The following functions are available in this module: chdir, getcwd, listdir, mkdir, rename,

rmdir, stat, sync, unlink, as well as the exception error.

8.2 Standard module macpath

This module provides a subset of the pathname manipulation functions available from the

optional standard module posixpath. It is best accessed through the more portable standard

module os, as os.path.

The following functions are available in this module: normcase, isabs, join, split, isdir,

isfile, exists.

49

Chapter 9

STDWIN ONLY

9.1 Built-in Module stdwin

This module de�nes several new object types and functions that provide access to the func-

tionality of the Standard Window System Interface, STDWIN [CWI report CR-R8817]. It is

available on systems to which STDWIN has been ported (which is most systems). It is only

available if the DISPLAY environment variable is set or an explicit `-display displayname '

argument is passed to the interpreter.

Functions have names that usually resemble their C STDWIN counterparts with the initial

`w' dropped. Points are represented by pairs of integers; rectangles by pairs of points. For

a complete description of STDWIN please refer to the documentation of STDWIN for C

programmers (aforementioned CWI report).

9.1.1 Functions De�ned in Module stdwin

The following functions are de�ned in the stdwin module:

open(title)

Open a new window whose initial title is given by the string argument. Return a window

object; window object methods are described below.

1

getevent()

Wait for and return the next event. An event is returned as a triple: the �rst element

is the event type, a small integer; the second element is the window object to which

the event applies, or None if it applies to no window in particular; the third element is

type-dependent. Names for event types and command codes are de�ned in the standard

module stdwinevent.

pollevent()

Return the next event, if one is immediately available. If no event is available, return

().

1

The Python version of STDWIN does not support draw procedures; all drawing requests are reported as

draw events.

50

getactive()

Return the window that is currently active, or None if no window is currently ac-

tive. (This can be emulated by monitoring WE_ACTIVATE and WE_DEACTIVATE

events.)

listfontnames(pattern)

Return the list of font names in the system that match the pattern (a string). The

pattern should normally be '*'; returns all available fonts. If the underlying window

system is X11, other patterns follow the standard X11 font selection syntax (as used

e.g. in resource de�nitions), i.e. the wildcard character '*' matches any sequence of

characters (including none) and '?' matches any single character.

setdefscrollbars(hag, vag)

Set the ags controlling whether subsequently opened windows will have horizontal

and/or vertical scroll bars.

setdefwinpos(h, v)

Set the default window position for windows opened subsequently.

setdefwinsize(width, height)

Set the default window size for windows opened subsequently.

getdefscrollbars()

Return the ags controlling whether subsequently opened windows will have horizontal

and/or vertical scroll bars.

getdefwinpos()

Return the default window position for windows opened subsequently.

getdefwinsize()

Return the default window size for windows opened subsequently.

getscrsize()

Return the screen size in pixels.

getscrmm()

Return the screen size in millimeters.

fetchcolor(colorname)

Return the pixel value corresponding to the given color name. Return the default

foreground color for unknown color names. Hint: the following code tests wheter you

are on a machine that supports more than two colors:

if stdwin.fetchcolor('black') <> \

stdwin.fetchcolor('red') <> \

stdwin.fetchcolor('white'):

print 'color machine'

else:

print 'monochrome machine'

setfgcolor(pixel)

Set the default foreground color. This will become the default foreground color of

51

windows opened subsequently, including dialogs.

setbgcolor(pixel)

Set the default background color. This will become the default background color of

windows opened subsequently, including dialogs.

getfgcolor()

Return the pixel value of the current default foreground color.

getbgcolor()

Return the pixel value of the current default background color.

setfont(fontname)

Set the current default font. This will become the default font for windows opened

subsequently, and is also used by the text measuring functions textwidth, textbreak,

lineheight and baseline below. This accepts two more optional parameters, size and

style: Size is the font size (in `points'). Style is a single character specifying the style,

as follows: 'b' = bold, 'i' = italic, 'o' = bold + italic, 'u' = underline; default style

is roman. Size and style are ignored under X11 but used on the Macintosh. (Sorry for

all this complexity | a more uniform interface is being designed.)

menucreate(title)

Create a menu object referring to a global menu (a menu that appears in all windows).

Methods of menu objects are described below. Note: normally, menus are created

locally; see the window method menucreate below. Warning: the menu only appears

in a window as long as the object returned by this call exists.

newbitmap(width, height)

Create a new bitmap object of the given dimensions. Methods of bitmap objects are

described below.

fleep()

Cause a beep or bell (or perhaps a `visual bell' or ash, hence the name).

message(string)

Display a dialog box containing the string. The user must click OK before the function

returns.

askync(prompt, default)

Display a dialog that prompts the user to answer a question with yes or no. Return 0

for no, 1 for yes. If the user hits the Return key, the default (which must be 0 or 1) is

returned. If the user cancels the dialog, the KeyboardInterrupt exception is raised.

askstr(prompt, default)

Display a dialog that prompts the user for a string. If the user hits the Return key,

the default string is returned. If the user cancels the dialog, the KeyboardInterrupt

exception is raised.

askfile(prompt, default, new)

Ask the user to specify a �lename. If new is zero it must be an existing �le; otherwise,

it must be a new �le. If the user cancels the dialog, the KeyboardInterrupt exception

is raised.

52

setcutbuffer(i, string)

Store the string in the system's cut bu�er number i , where it can be found (for pasting)

by other applications. On X11, there are 8 cut bu�ers (numbered 0..7). Cut bu�er

number 0 is the `clipboard' on the Macintosh.

getcutbuffer(i)

Return the contents of the system's cut bu�er number i .

rotatecutbuffers(n)

On X11, rotate the 8 cut bu�ers by n. Ignored on the Macintosh.

getselection(i)

Return X11 selection number i. Selections are not cut bu�ers. Selection numbers are

de�ned in module stdwinevents. Selection WS_PRIMARY is the primary selection (used

by xterm, for instance); selection WS_SECONDARY is the secondary selection; selection

WS_CLIPBOARD is the clipboard selection (used by xclipboard). On the Macintosh, this

always returns an empty string.

resetselection(i)

Reset selection number i , if this process owns it. (See windowmethod setselection()).

baseline()

Return the baseline of the current font (de�ned by STDWIN as the vertical distance

between the baseline and the top of the characters).

lineheight()

Return the total line height of the current font.

textbreak(str, width)

Return the number of characters of the string that �t into a space of width bits wide

when drawn in the curent font.

textwidth(str)

Return the width in bits of the string when drawn in the current font.

connectionnumber()

fileno()

(X11 under Unix only) Return the \connection number" used by the underlying X11

implementation. (This is normally the �le number of the socket.) Both functions return

the same value; connectionnumber() is named after the corresponding function in X11

and STDWIN, while fileno() makes it possible to use the stdwin module as a \�le"

object parameter to select.select(). Note that if select() implies that input is

possible on stdwin, this does not guarantee that an event is ready | it may be some

internal communication going on between the X server and the client library. Thus, you

should call stdwin.pollevent() until it returns None to check for events if you don't

want your program to block. Because of internal bu�ering in X11, it is also possible

that stdwin.pollevent() returns an event while select() does not �nd stdwin to be

ready, so you should read any pending events with stdwin.pollevent() until it returns

None before entering a blocking select() call.

53

9.1.2 Window Object Methods

Window objects are created by stdwin.open(). They are closed by their close() method

or when they are garbage-collected. Window objects have the following methods:

begindrawing()

Return a drawing object, whose methods (described below) allow drawing in the win-

dow.

change(rect)

Invalidate the given rectangle; this may cause a draw event.

gettitle()

Returns the window's title string.

getdocsize()

Return a pair of integers giving the size of the document as set by setdocsize().

getorigin()

Return a pair of integers giving the origin of the window with respect to the document.

gettitle()

Return the window's title string.

getwinsize()

Return a pair of integers giving the size of the window.

getwinpos()

Return a pair of integers giving the position of the window's upper left corner (relative

to the upper left corner of the screen).

menucreate(title)

Create a menu object referring to a local menu (a menu that appears only in this

window). Methods of menu objects are described below. Warning: the menu only

appears as long as the object returned by this call exists.

scroll(rect, point)

Scroll the given rectangle by the vector given by the point.

setdocsize(point)

Set the size of the drawing document.

setorigin(point)

Move the origin of the window (its upper left corner) to the given point in the document.

setselection(i, str)

Attempt to set X11 selection number i to the string str . (See stdwin method

getselection() for the meaning of i .) Return true if it succeeds. If succeeds, the

window \owns" the selection until (a) another applications takes ownership of the se-

lection; or (b) the window is deleted; or (c) the application clears ownership by calling

stdwin.resetselection(i). When another application takes ownership of the selec-

tion, a WE_LOST_SEL event is received for no particular window and with the selection

number as detail. Ignored on the Macintosh.

54

settimer(dsecs)

Schedule a timer event for the window in dsecs/10 seconds.

settitle(title)

Set the window's title string.

setwincursor(name)

Set the window cursor to a cursor of the given name. It raises the RuntimeError

exception if no cursor of the given name exists. Suitable names include 'ibeam',

'arrow', 'cross', 'watch' and 'plus'. On X11, there are many more (see

`<X11/cursorfont.h>').

setwinpos(h, v)

Set the the position of the window's upper left corner (relative to the upper left corner

of the screen).

setwinsize(width, height)

Set the window's size.

show(rect)

Try to ensure that the given rectangle of the document is visible in the window.

textcreate(rect)

Create a text-edit object in the document at the given rectangle. Methods of text-edit

objects are described below.

setactive()

Attempt to make this window the active window. If successful, this will generate a

WE_ACTIVATE event (and a WE_DEACTIVATE event in case another window in

this application became inactive).

close()

Discard the window object. It should not be used again.

9.1.3 Drawing Object Methods

Drawing objects are created exclusively by the window method begindrawing(). Only one

drawing object can exist at any given time; the drawing object must be deleted to �nish

drawing. No drawing object may exist when stdwin.getevent() is called. Drawing objects

have the following methods:

box(rect)

Draw a box just inside a rectangle.

circle(center, radius)

Draw a circle with given center point and radius.

elarc(center, (rh, rv), (a1, a2))

Draw an elliptical arc with given center point. (rh, rv) gives the half sizes of the

horizontal and vertical radii. (a1, a2) gives the angles (in degrees) of the begin and

end points. 0 degrees is at 3 o'clock, 90 degrees is at 12 o'clock.

55

erase(rect)

Erase a rectangle.

fillcircle(center, radius)

Draw a �lled circle with given center point and radius.

fillelarc(center, (rh, rv), (a1, a2))

Draw a �lled elliptical arc; arguments as for elarc.

fillpoly(points)

Draw a �lled polygon given by a list (or tuple) of points.

invert(rect)

Invert a rectangle.

line(p1, p2)

Draw a line from point p1 to p2 .

paint(rect)

Fill a rectangle.

poly(points)

Draw the lines connecting the given list (or tuple) of points.

shade(rect, percent)

Fill a rectangle with a shading pattern that is about percent percent �lled.

text(p, str)

Draw a string starting at point p (the point speci�es the top left coordinate of the

string).

xorcircle(center, radius)

xorelarc(center, (rh, rv), (a1, a2))

xorline(p1, p2)

xorpoly(points)

Draw a circle, an elliptical arc, a line or a polygon, respectively, in XOR mode.

setfgcolor()

setbgcolor()

getfgcolor()

getbgcolor()

These functions are similar to the corresponding functions described above for the

stdwin module, but a�ect or return the colors currently used for drawing instead of

the global default colors. When a drawing object is created, its colors are set to the

window's default colors, which are in turn initialized from the global default colors when

the window is created.

setfont()

baseline()

lineheight()

textbreak()

textwidth()

These functions are similar to the corresponding functions described above for the

56

stdwin module, but a�ect or use the current drawing font instead of the global default

font. When a drawing object is created, its font is set to the window's default font,

which is in turn initialized from the global default font when the window is created.

bitmap(point, bitmap, mask)

Draw the bitmap with its top left corner at point . If the optional mask argument is

present, it should be either the same object as bitmap, to draw only those bits that are

set in the bitmap, in the foreground color, or None, to draw all bits (ones are drawn in

the foreground color, zeros in the background color).

cliprect(rect)

Set the \clipping region" to a rectangle. The clipping region limits the e�ect of all

drawing operations, until it is changed again or until the drawing object is closed.

When a drawing object is created the clipping region is set to the entire window. When

an object to be drawn falls partly outside the clipping region, the set of pixels drawn is

the intersection of the clipping region and the set of pixels that would be drawn by the

same operation in the absence of a clipping region. clipping region

noclip()

Reset the clipping region to the entire window.

close()

enddrawing()

Discard the drawing object. It should not be used again.

9.1.4 Menu Object Methods

A menu object represents a menu. The menu is destroyed when the menu object is deleted.

The following methods are de�ned:

additem(text, shortcut)

Add a menu item with given text. The shortcut must be a string of length 1, or omitted

(to specify no shortcut).

setitem(i, text)

Set the text of item number i .

enable(i, ag)

Enable or disables item i .

check(i, ag)

Set or clear the check mark for item i .

close()

Discard the menu object. It should not be used again.

9.1.5 Bitmap Object Methods

A bitmap represents a rectangular array of bits. The top left bit has coordinate (0, 0). A

bitmap can be drawn with the bitmap method of a drawing object. The following methods

are de�ned:

57

getsize()

Return a tuple representing the width and height of the bitmap. (This returns the

values that have been passed to the newbitmap function.)

setbit(point, bit)

Set the value of the bit indicated by point to bit .

getbit(point)

Return the value of the bit indicated by point .

close()

Discard the bitmap object. It should not be used again.

9.1.6 Text-edit Object Methods

A text-edit object represents a text-edit block. For semantics, see the STDWIN documenta-

tion for C programmers. The following methods exist:

arrow(code)

Pass an arrow event to the text-edit block. The code must be one of WC_LEFT, WC_RIGHT,

WC_UP or WC_DOWN (see module stdwinevents).

draw(rect)

Pass a draw event to the text-edit block. The rectangle speci�es the redraw area.

event(type, window, detail)

Pass an event gotten from stdwin.getevent() to the text-edit block. Return true if

the event was handled.

getfocus()

Return 2 integers representing the start and end positions of the focus, usable as slice

indices on the string returned by gettext().

getfocustext()

Return the text in the focus.

getrect()

Return a rectangle giving the actual position of the text-edit block. (The bottom

coordinate may di�er from the initial position because the block automatically shrinks

or grows to �t.)

gettext()

Return the entire text bu�er.

move(rect)

Specify a new position for the text-edit block in the document.

replace(str)

Replace the text in the focus by the given string. The new focus is an insert point at

the end of the string.

setfocus(i, j)

Specify the new focus. Out-of-bounds values are silently clipped.

58

settext(str)

Replace the entire text bu�er by the given string and set the focus to (0, 0).

setview(rect)

Set the view rectangle to rect . If rect is None, viewing mode is reset. In viewing mode,

all output from the text-edit object is clipped to the viewing rectangle. This may be

useful to implement your own scrolling text subwindow.

close()

Discard the text-edit object. It should not be used again.

9.1.7 Example

Here is a minimal example of using STDWIN in Python. It creates a window and draws

the string \Hello world" in the top left corner of the window. The window will be correctly

redrawn when covered and re-exposed. The program quits when the close icon or menu item

is requested.

import stdwin

from stdwinevents import *

def main():

mywin = stdwin.open('Hello')

#

while 1:

(type, win, detail) = stdwin.getevent()

if type == WE_DRAW:

draw = win.begindrawing()

draw.text((0, 0), 'Hello, world')

del draw

elif type == WE_CLOSE:

break

main()

9.2 Standard Module stdwinevents

This module de�nes constants used by STDWIN for event types (WE_ACTIVATE etc.), com-

mand codes (WC_LEFT etc.) and selection types (WS_PRIMARY etc.). Read the �le for details.

Suggested usage is

>>> from stdwinevents import *

>>>

59

9.3 Standard Module rect

This module contains useful operations on rectangles. A rectangle is de�ned as in module

stdwin: a pair of points, where a point is a pair of integers. For example, the rectangle

(10, 20), (90, 80)

is a rectangle whose left, top, right and bottom edges are 10, 20, 90 and 80, respectively. Note

that the positive vertical axis points down (as in stdwin).

The module de�nes the following objects:

error

The exception raised by functions in this module when they detect an error. The

exception argument is a string describing the problem in more detail.

empty

The rectangle returned when some operations return an empty result. This makes it

possible to quickly check whether a result is empty:

>>> import rect

>>> r1 = (10, 20), (90, 80)

>>> r2 = (0, 0), (10, 20)

>>> r3 = rect.intersect(r1, r2)

>>> if r3 is rect.empty: print 'Empty intersection'

Empty intersection

>>>

is_empty(r)

Returns true if the given rectangle is empty. A rectangle (left, top), (right, bottom)

is empty if left � right or top � bottom .

intersect(list)

Returns the intersection of all rectangles in the list argument. It may also be called with

a tuple argument or with two or more rectangles as arguments. Raises rect.error if

the list is empty. Returns rect.empty if the intersection of the rectangles is empty.

union(list)

Returns the smallest rectangle that contains all non-empty rectangles in the list argu-

ment. It may also be called with a tuple argument or with two or more rectangles as

arguments. Returns rect.empty if the list is empty or all its rectangles are empty.

pointinrect(point, rect)

Returns true if the point is inside the rectangle. By de�nition, a point (h, v) is inside

a rectangle (left, top), (right, bottom) if left � h < right and top � v < bottom .

inset(rect, (dh, dv))

Returns a rectangle that lies inside the rect argument by dh pixels horizontally and dv

pixels vertically. If dh or dv is negative, the result lies outside rect .

60

rect2geom(rect)

Converts a rectangle to geometry representation: (left, top), (width, height).

geom2rect(geom)

Converts a rectangle given in geometry representation back to the standard rectangle

representation (left, top), (right, bottom).

61

Chapter 10

SGI MACHINES ONLY

10.1 Built-in Module al

This module provides access to the audio facilities of the Indigo and 4D/35 workstations,

described in section 3A of the IRIX 4.0 man pages (and also available as an option in IRIX

3.3). You'll need to read those man pages to understand what these functions do! Some of the

functions are not available in releases below 4.0.5. Again, see the manual to check whether a

speci�c function is available on your platform.

Symbolic constants from the C header �le `<audio.h>' are de�ned in the standard module

AL, see below.

Warning: the current version of the audio library may dump core when bad argument

values are passed rather than returning an error status. Unfortunately, since the precise

circumstances under which this may happen are undocumented and hard to check, the Python

interface can provide no protection against this kind of problems. (One example is specifying

an excessive queue size | there is no documented upper limit.)

Module al de�nes the following functions:

openport(name, direction, con�g)

Equivalent to the C function ALopenport(). The name and direction arguments are

strings. The optional con�g argument is an opaque con�guration object as returned by

al.newconfig(). The return value is an opaque port object; methods of port objects

are described below.

newconfig()

Equivalent to the C function ALnewcon�g(). The return value is a new opaque con�g-

uration object; methods of con�guration objects are described below.

queryparams(device)

Equivalent to the C function ALqueryparams(). The device argument is an integer.

The return value is a list of integers containing the data returned by ALqueryparams().

getparams(device, list)

Equivalent to the C function ALgetparams(). The device argument is an integer. The

list argument is a list such as returned by queryparams; it is modi�ed in place (!).

62

setparams(device, list)

Equivalent to the C function ALsetparams(). The device argument is an integer.The

list argument is a list such as returned by al.queryparams.

Con�guration objects (returned by al.newconfig() have the following methods:

getqueuesize()

Return the queue size; equivalent to the C function ALgetqueuesize().

setqueuesize(size)

Set the queue size; equivalent to the C function ALsetqueuesize().

getwidth()

Get the sample width; equivalent to the C function ALgetwidth().

getwidth(width)

Set the sample width; equivalent to the C function ALsetwidth().

getchannels()

Get the channel count; equivalent to the C function ALgetchannels().

setchannels(nchannels)

Set the channel count; equivalent to the C function ALsetchannels().

getsampfmt()

Get the sample format; equivalent to the C function ALgetsampfmt().

setsampfmt(sampfmt)

Set the sample format; equivalent to the C function ALsetsampfmt().

getfloatmax()

Get the maximum value for oating sample formats; equivalent to the C function AL-

getoatmax().

setfloatmax(oatmax)

Set the maximum value for oating sample formats; equivalent to the C function ALset-

oatmax().

Port objects (returned by al.openport() have the following methods:

closeport()

Close the port; equivalent to the C function ALcloseport().

getfd()

Return the �le descriptor as an int; equivalent to the C function ALgetfd().

getfilled()

Return the number of �lled samples; equivalent to the C function ALget�lled().

getfillable()

Return the number of �llable samples; equivalent to the C function ALget�llable().

readsamps(nsamples)

Read a number of samples from the queue, blocking if necessary; equivalent to the C

function ALreadsamples. The data is returned as a string containing the raw data (e.g.

2 bytes per sample in big-endian byte order (high byte, low byte) if you have set the

63

sample width to 2 bytes.

writesamps(samples)

Write samples into the queue, blocking if necessary; equivalent to the C function AL-

writesamples. The samples are encoded as described for the readsamps return value.

getfillpoint()

Return the `�ll point'; equivalent to the C function ALget�llpoint().

setfillpoint(�llpoint)

Set the `�ll point'; equivalent to the C function ALset�llpoint().

getconfig()

Return a con�guration object containing the current con�guration of the port; equiva-

lent to the C function ALgetcon�g().

setconfig(con�g)

Set the con�guration from the argument, a con�guration object; equivalent to the C

function ALsetcon�g().

getstatus(list)

Get status information on last error equivalent to C function ALgetstatus().

10.2 Standard Module AL

This module de�nes symbolic constants needed to use the built-in module al (see above);

they are equivalent to those de�ned in the C header �le `<audio.h>' except that the name

pre�x `AL_' is omitted. Read the module source for a complete list of the de�ned names.

Suggested use:

import al

from AL import *

10.3 Built-in Module audio

Note: This module is obsolete, since the hardware to which it interfaces is obsolete. For

audio on the Indigo or 4D/35, see built-in module al above.

This module provides rudimentary access to the audio I/O device `/dev/audio' on the Silicon

Graphics Personal IRIS 4D/25; see audio(7). It supports the following operations:

setoutgain(n)

Sets the output gain. 0 � n < 256.

getoutgain()

Returns the output gain.

setrate(n)

Sets the sampling rate: 1 = 32K/sec, 2 = 16K/sec, 3 = 8K/sec.

64

setduration(n)

Sets the `sound duration' in units of 1/100 seconds.

read(n)

Reads a chunk of n sampled bytes from the audio input (line in or microphone). The

chunk is returned as a string of length n. Each byte encodes one sample as a signed

8-bit quantity using linear encoding. This string can be converted to numbers using

chr2num() described below.

write(buf)

Writes a chunk of samples to the audio output (speaker).

These operations support asynchronous audio I/O:

start_recording(n)

Starts a second thread (a process with shared memory) that begins reading n bytes

from the audio device. The main thread immediately continues.

wait_recording()

Waits for the second thread to �nish and returns the data read.

stop_recording()

Makes the second thread stop reading as soon as possible. Returns the data read so far.

poll_recording()

Returns true if the second thread has �nished reading (so wait_recording() would

return the data without delay).

start_playing()

wait_playing()

stop_playing()

poll_playing()

Similar but for output. stop_playing() returns a lower bound for the number of bytes

actually played (not very accurate).

The following operations do not a�ect the audio device but are implemented in C for e�ciency:

amplify(buf , f1, f2)

Ampli�es a chunk of samples by a variable factor changing from f1/256 to f2/256.

Negative factors are allowed. Resulting values that are to large to �t in a byte are

clipped.

reverse(buf)

Returns a chunk of samples backwards.

add(buf1, buf2)

Bytewise adds two chunks of samples. Bytes that exceed the range are clipped. If one

bu�er is shorter, it is assumed to be padded with zeros.

chr2num(buf)

Converts a string of sampled bytes as returned by read() into a list containing the

numeric values of the samples.

num2chr(list)

Converts a list as returned by chr2num() back to a bu�er acceptable by write().

65

10.4 Built-in Module gl

This module provides access to the Silicon Graphics Graphics Library. It is available only on

Silicon Graphics machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core.

In particular, the use of most GL calls is unsafe before the �rst window is opened.

The module is too large to document here in its entirety, but the following should help you

to get started. The parameter conventions for the C functions are translated to Python as

follows:

� All (short, long, unsigned) int values are represented by Python integers.

� All oat and double values are represented by Python oating point numbers. In most

cases, Python integers are also allowed.

� All arrays are represented by one-dimensional Python lists. In most cases, tuples are

also allowed.

� All string and character arguments are represented by Python strings, for instance,

winopen('Hi There!') and rotate(900, 'z').

� All (short, long, unsigned) integer arguments or return values that are only used to

specify the length of an array argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

� Output arguments are omitted from the argument list; they are transmitted as function

return values instead. If more than one value must be returned, the return value is a

tuple. If the C function has both a regular return value (that is not omitted because of

the previous rule) and an output argument, the return value comes �rst in the tuple.

Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

66

The following functions are non-standard or have special argument conventions:

varray(argument)

Equivalent to but faster than a number of v3d() calls. The argument is a list (or tuple)

of points. Each point must be a tuple of coordinates (x, y, z) or (x, y). The points

may be 2- or 3-dimensional but must all have the same dimension. Float and int values

may be mixed however. The points are always converted to 3D double precision points

by assuming z = 0.0 if necessary (as indicated in the man page), and for each point

v3d() is called.

nvarray()

Equivalent to but faster than a number of n3f and v3f calls. The argument is an array

(list or tuple) of pairs of normals and points. Each pair is a tuple of a point and a

normal for that point. Each point or normal must be a tuple of coordinates (x, y, z).

Three coordinates must be given. Float and int values may be mixed. For each pair,

n3f() is called for the normal, and then v3f() is called for the point.

vnarray()

Similar to nvarray() but the pairs have the point �rst and the normal second.

nurbssurface(s_k, t_k, ctl, s_ord, t_ord, type)

De�nes a nurbs surface. The dimensions of ctl[][] are computed as follows:

[len(s_k) - s_ord], [len(t_k) - t_ord].

nurbscurve(knots, ctlpoints, order, type)

De�nes a nurbs curve. The length of ctlpoints is len(knots) - order .

pwlcurve(points, type)

De�nes a piecewise-linear curve. points is a list of points. type must be N_ST.

pick(n)

select(n)

The only argument to these functions speci�es the desired size of the pick or select

bu�er.

endpick()

endselect()

These functions have no arguments. They return a list of integers representing the used

part of the pick/select bu�er. No method is provided to detect bu�er overrun.

Here is a tiny but complete example GL program in Python:

67

import gl, GL, time

def main():

gl.foreground()

gl.prefposition(500, 900, 500, 900)

w = gl.winopen('CrissCross')

gl.ortho2(0.0, 400.0, 0.0, 400.0)

gl.color(GL.WHITE)

gl.clear()

gl.color(GL.RED)

gl.bgnline()

gl.v2f(0.0, 0.0)

gl.v2f(400.0, 400.0)

gl.endline()

gl.bgnline()

gl.v2f(400.0, 0.0)

gl.v2f(0.0, 400.0)

gl.endline()

time.sleep(5)

main()

10.5 Built-in Module fm

This module provides access to the IRIS Font Manager library. It is available only on Silicon

Graphics machines. See also: 4Sight User's Guide, Section 1, Chapter 5: Using the IRIS Font

Manager.

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features

are: matrix operations; cache operations; character operations (use string operations instead);

some details of font info; individual glyph metrics; and printer matching.

It supports the following operations:

init()

Initialization function. Calls fminit(). It is normally not necessary to call this function,

since it is called automatically the �rst time the fm module is imported.

findfont(fontname)

Return a font handle object. Calls fmfindfont(fontname).

enumerate()

Returns a list of available font names. This is an interface to fmenumerate().

prstr(string)

Render a string using the current font (see the setfont() font handle method below).

Calls fmprstr(string).

setpath(string)

68

Sets the font search path. Calls fmsetpath(string). (XXX Does not work!?!)

fontpath()

Returns the current font search path.

Font handle objects support the following operations:

scalefont(factor)

Returns a handle for a scaled version of this font. Calls fmscalefont(fh, factor).

setfont()

Makes this font the current font. Note: the e�ect is undone silently when the font

handle object is deleted. Calls fmsetfont(fh).

getfontname()

Returns this font's name. Calls fmgetfontname(fh).

getcomment()

Returns the comment string associated with this font. Raises an exception if there is

none. Calls fmgetcomment(fh).

getfontinfo()

Returns a tuple giving some pertinent data about this font. This is an inter-

face to fmgetfontinfo(). The returned tuple contains the following numbers:

(printermatched, �xed_width, xorig, yorig, xsize, ysize, height, nglyphs).

getstrwidth(string)

Returns the width, in pixels, of the string when drawn in this font. Calls

fmgetstrwidth(fh, string).

10.6 Standard Modules GL and DEVICE

These modules de�ne the constants used by the Silicon Graphics Graphics Library that C

programmers �nd in the header �les `<gl/gl.h>' and `<gl/device.h>'. Read the module

source �les for details.

10.7 Built-in Module fl

This module provides an interface to the FORMS Library by Mark Overmars, version 2.0b.

For more info about FORMS, write to markov@cs.ruu.nl.

Most functions are literal translations of their C equivalents, dropping the initial `fl_' from

their name. Constants used by the library are de�ned in module FL described below.

The creation of objects is a little di�erent in Python than in C: instead of the `current

form' maintained by the library to which new FORMS objects are added, all functions

that add a FORMS object to a button are methods of the Python object representing the

form. Consequently, there are no Python equivalents for the C functions fl_addto_form and

fl_end_form, and the equivalent of fl_bgn_form is called fl.make_form.

Watch out for the somewhat confusing terminology: FORMS uses the word object for the

69

buttons, sliders etc. that you can place in a form. In Python, `object' means any value.

The Python interface to FORMS introduces two new Python object types: form objects

(representing an entire form) and FORMS objects (representing one button, slider etc.).

Hopefully this isn't too confusing...

There are no `free objects' in the Python interface to FORMS, nor is there an easy way to

add object classes written in Python. The FORMS interface to GL event handling is avaiable,

though, so you can mix FORMS with pure GL windows.

Please note: importing fl implies a call to the GL function foreground() and to the

FORMS routine fl_init().

10.7.1 Functions de�ned in module fl

Module fl de�nes the following functions. For more information about what they do, see the

description of the equivalent C function in the FORMS documentation:

make_form(type, width, height)

Create a form with given type, width and height. This returns a form object, whose

methods are described below.

do_forms()

The standard FORMS main loop. Returns a Python object representing the FORMS

object needing interaction, or the special value FL.EVENT.

check_forms()

Check for FORMS events. Returns what do_forms above returns, or None if there is

no event that immediately needs interaction.

set_event_call_back(function)

Set the event callback function.

set_graphics_mode(rgbmode, doublebu�ering)

Set the graphics modes.

get_rgbmode()

Return the current rgb mode. This is the value of the C global variable fl_rgbmode.

show_message(str1, str2, str3)

Show a dialog box with a three-line message and an OK button.

show_question(str1, str2, str3)

Show a dialog box with a three-line message and YES and NO buttons. It returns 1 if

the user pressed YES, 0 if NO.

show_choice(str1, str2, str3, but1, but2, but3)

Show a dialog box with a three-line message and up to three buttons. It returns the

number of the button clicked by the user (1, 2 or 3). The but2 and but3 arguments are

optional.

show_input(prompt, default)

Show a dialog box with a one-line prompt message and text �eld in which the user can

enter a string. The second argument is the default input string. It returns the string

70

value as edited by the user.

show_file_selector(message, directory, pattern, default)

Show a dialog box inm which the user can select a �le. It returns the absolute �lename

selected by the user, or None if the user presses Cancel.

get_directory()

get_pattern()

get_filename()

These functions return the directory, pattern and �lename (the tail part only) selected

by the user in the last show_file_selector call.

qdevice(dev)

unqdevice(dev)

isqueued(dev)

qtest()

qread()

qreset()

qenter(dev, val)

get_mouse()

tie(button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these

if you want to handle some GL events yourself when using fl.do_events. When a GL

event is detected that FORMS cannot handle, fl.do_forms() returns the special value

FL.EVENT and you should call fl.qread() to read the event from the queue. Don't use

the equivalent GL functions!

color()

mapcolor()

getmcolor()

See the description in the FORMS documentation of fl_color, fl_mapcolor and

fl_getmcolor.

10.7.2 Form object methods and data attributes

Form objects (returned by fl.make_form() above) have the following methods. Each method

corresponds to a C function whose name is pre�xed with `fl_'; and whose �rst argument is

a form pointer; please refer to the o�cial FORMS documentation for descriptions.

All the `add_: : : ' functions return a Python object representing the FORMS object. Methods

of FORMS objects are described below. Most kinds of FORMS object also have some methods

speci�c to that kind; these methods are listed here.

show_form(placement, bordertype, name)

Show the form.

hide_form()

Hide the form.

redraw_form()

71

Redraw the form.

set_form_position(x, y)

Set the form's position.

freeze_form()

Freeze the form.

unfreeze_form()

Unfreeze the form.

activate_form()

Activate the form.

deactivate_form()

Deactivate the form.

bgn_group()

Begin a new group of objects; return a group object.

end_group()

End the current group of objects.

find_first()

Find the �rst object in the form.

find_last()

Find the last object in the form.

add_box(type, x, y, w, h, name)

Add a box object to the form. No extra methods.

add_text(type, x, y, w, h, name)

Add a text object to the form. No extra methods.

add_clock(type, x, y, w, h, name)

Add a clock object to the form.

Method: get_clock.

add_button(type, x, y, w, h, name)

Add a button object to the form.

Methods: get_button, set_button.

add_lightbutton(type, x, y, w, h, name)

Add a lightbutton object to the form.

Methods: get_button, set_button.

add_roundbutton(type, x, y, w, h, name)

Add a roundbutton object to the form.

Methods: get_button, set_button.

add_slider(type, x, y, w, h, name)

Add a slider object to the form.

Methods: set_slider_value, get_slider_value, set_slider_bounds,

get_slider_bounds, set_slider_return, set_slider_size,

set_slider_precision, set_slider_step.

72

add_valslider(type, x, y, w, h, name)

Add a valslider object to the form.

Methods: set_slider_value, get_slider_value, set_slider_bounds,

get_slider_bounds, set_slider_return, set_slider_size,

set_slider_precision, set_slider_step.

add_dial(type, x, y, w, h, name)

Add a dial object to the form.

Methods: set_dial_value, get_dial_value, set_dial_bounds, get_dial_bounds.

add_positioner(type, x, y, w, h, name)

Add a positioner object to the form.

Methods: set_positioner_xvalue, set_positioner_yvalue,

set_positioner_xbounds, set_positioner_ybounds, get_positioner_xvalue,

get_positioner_yvalue, get_positioner_xbounds, get_positioner_ybounds.

add_counter(type, x, y, w, h, name)

Add a counter object to the form.

Methods: set_counter_value, get_counter_value, set_counter_bounds,

set_counter_step, set_counter_precision, set_counter_return.

add_input(type, x, y, w, h, name)

Add a input object to the form.

Methods: set_input, get_input, set_input_color, set_input_return.

add_menu(type, x, y, w, h, name)

Add a menu object to the form.

Methods: set_menu, get_menu, addto_menu.

add_choice(type, x, y, w, h, name)

Add a choice object to the form.

Methods: set_choice, get_choice, clear_choice, addto_choice, replace_choice,

delete_choice, get_choice_text, set_choice_fontsize, set_choice_fontstyle.

add_browser(type, x, y, w, h, name)

Add a browser object to the form.

Methods: set_browser_topline, clear_browser, add_browser_line,

addto_browser, insert_browser_line, delete_browser_line,

replace_browser_line, get_browser_line, load_browser, get_browser_maxline,

select_browser_line, deselect_browser_line, deselect_browser,

isselected_browser_line, get_browser, set_browser_fontsize,

set_browser_fontstyle, set_browser_specialkey.

add_timer(type, x, y, w, h, name)

Add a timer object to the form.

Methods: set_timer, get_timer.

Form objects have the following data attributes; see the FORMS documentation:

73

Name Type Meaning

window int (read-only) GL window id

w oat form width

h oat form height

x oat form x origin

y oat form y origin

deactivated int nonzero if form is deactivated

visible int nonzero if form is visible

frozen int nonzero if form is frozen

doublebuf int nonzero if double bu�ering on

10.7.3 FORMS object methods and data attributes

Besides methods speci�c to particular kinds of FORMS objects, all FORMS objects also have

the following methods:

set_call_back(function, argument)

Set the object's callback function and argument. When the object needs interaction,

the callback function will be called with two arguments: the object, and the callback

argument. (FORMS objects without a callback function are returned by fl.do_forms()

or fl.check_forms()when they need interaction.) Call this method without arguments

to remove the callback function.

delete_object()

Delete the object.

show_object()

Show the object.

hide_object()

Hide the object.

redraw_object()

Redraw the object.

freeze_object()

Freeze the object.

unfreeze_object()

Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

74

Name Type Meaning

objclass int (read-only) object class

type int (read-only) object type

boxtype int box type

x oat x origin

y oat y origin

w oat width

h oat height

col1 int primary color

col2 int secondary color

align int alignment

lcol int label color

lsize oat label font size

label string label string

lstyle int label style

pushed int (read-only) (see FORMS docs)

focus int (read-only) (see FORMS docs)

belowmouse int (read-only) (see FORMS docs)

frozen int (read-only) (see FORMS docs)

active int (read-only) (see FORMS docs)

input int (read-only) (see FORMS docs)

visible int (read-only) (see FORMS docs)

radio int (read-only) (see FORMS docs)

automatic int (read-only) (see FORMS docs)

10.8 Standard Module FL

This module de�nes symbolic constants needed to use the built-in module fl (see above);

they are equivalent to those de�ned in the C header �le `<forms.h>' except that the name

pre�x `FL_' is omitted. Read the module source for a complete list of the de�ned names.

Suggested use:

import fl

from FL import *

10.9 Standard Module flp

This module de�nes functions that can read form de�nitions created by the `form designer'

(fdesign) program that comes with the FORMS library (see module fl above).

For now, see the �le `flp.doc' in the Python library source directory for a description.

XXX A complete description should be inserted here!

75

10.10 Standard Module panel

Please note: The FORMS library, to which the fl module described above interfaces, is

a simpler and more accessible user interface library for use with GL than the Panel Module

(besides also being by a Dutch author).

This module should be used instead of the built-in module pnl to interface with the Panel

Library.

The module is too large to document here in its entirety. One interesting function:

defpanellist(�lename)

Parses a panel description �le containing S-expressions written by the Panel Editor

that accompanies the Panel Library and creates the described panels. It returns a list

of panel objects.

Warning: the Python interpreter will dump core if you don't create a GL window before

calling panel.mkpanel() or panel.defpanellist().

10.11 Standard Module panelparser

This module de�nes a self-contained parser for S-expressions as output by the Panel Editor

(which is written in Scheme so it can't help writing S-expressions). The relevant function is

panelparser.parse_file(�le) which has a �le object (not a �lename!) as argument and

returns a list of parsed S-expressions. Each S-expression is converted into a Python list, with

atoms converted to Python strings and sub-expressions (recursively) to Python lists. For

more details, read the module �le.

10.12 Built-in Module pnl

This module provides access to the Panel Library built by NASA Ames (to get it, send e-mail

to panel-request@nas.nasa.gov). All access to it should be done through the standard mod-

ule panel, which transparantly exports most functions from pnl but rede�nes pnl.dopanel().

Warning: the Python interpreter will dump core if you don't create a GL window before

calling pnl.mkpanel().

The module is too large to document here in its entirety.

10.13 Built-in Module jpeg

The module jpeg provides access to the jpeg compressor and decompressor written by the

Independent JPEG Group. JPEG is a (draft?) standard for compressing pictures. For

details on jpeg or the Indepent JPEG Group software refer to the JPEG standard or the

documentation provided with the software.

The jpeg module de�nes these functions:

76

compress(data, w, h, b)

Treat data as a pixmap of width w and height h, with b bytes per pixel. The data is

in sgi gl order, so the �rst pixel is in the lower-left corner. This means that lrectread

return data can immedeately be passed to compress. Currently only 1 byte and 4 byte

pixels are allowed, the former being treaded as greyscale and the latter as RGB color.

Compress returns a string that contains the compressed picture, in JFIF format.

decompress(data)

Data is a string containing a picture in JFIF format. It returns a tuple

(data, width, height, bytesperpixel). Again, the data is suitable to pass to lrectwrite.

setoption(name, value)

Set various options. Subsequent compress and decompress calls will use these options.

The following options are available:

'forcegray'Force output to be grayscale, even if input is RGB.

'quality'Set the quality of the compressed image to a value between 0 and 100 (default

is 75). Compress only.

'optimize'Perform hu�man table optimization. Takes longer, but results in smaller

compressed image. Compress only.

'smooth'Perform inter-block smoothing on uncompressed image. Only useful for low-

quality images. Decompress only.

Compress and uncompress raise the error jpeg.error in case of errors.

10.14 Built-in module imgfile

The img�le module allows python programs to access SGI imglib image �les (also known as

`.rgb' �les). The module is far from complete, but is provided anyway since the functionality

that there is is enough in some cases. Currently, colormap �les are not supported.

The module de�nes the following variables and functions:

error

This exception is raised on all errors, such as unsupported �le type, etc.

getsizes(�le)

This function returns a tuple (x, y, z) where x and y are the size of the image in

pixels and z is the number of bytes per pixel. Only 3 byte RGB pixels and 1 byte

greyscale pixels are currently supported.

read(�le)

This function reads and decodes the image on the speci�ed �le, and returns it as a

python string. The string has either 1 byte greyscale pixels or 4 byte RGBA pixels.

The bottom left pixel is the �rst in the string. This format is suitable to pass to

gl.lrectwrite, for instance.

readscaled(�le, x, y, �lter, blur)

This function is identical to read but it returns an image that is scaled to the given

x and y sizes. If the �lter and blur parameters are omitted scaling is done by simply

77

dropping or duplicating pixels, so the result will be less than perfect, especially for

computer-generated images.

Alternatively, you can specify a �lter to use to smoothen the image after scaling. The �l-

ter forms supported are 'impulse', 'box', 'triangle', 'quadratic' and 'gaussian'.

If a �lter is speci�ed blur is an optional parameter specifying the blurriness of the �lter.

It defaults to 1.0.

Readscaled makes no attempt to keep the aspect ratio correct, so that is the users'

responsibility.

write(�le, data, x, y, z)

This function writes the RGB or greyscale data in data to image �le �le. x and y give

the size of the image, z is 1 for 1 byte greyscale images or 3 for RGB images (which

are stored as 4 byte values of which only the lower three bytes are used). These are the

formats returned by gl.lrectread.

10.15 Built-in module imageop

The imageop module contains some useful operations on images. It operates on images

consisting of 8 or 32 bit pixels stored in python strings. This is the same format as used by

gl.lrectwrite and the imgfile module.

The module de�nes the following variables and functions:

error

This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop(image, psize, width, height, x0, y0, x1, y1)

This function takes the image in image, which should by width by height in size and

consist of pixels of psize bytes, and returns the selected part of that image. X0, y0,

x1 and y1 are like the lrectread parameters, i.e. the boundary is included in the new

image. The new boundaries need not be inside the picture. Pixels that fall outside the

old image will have their value set to zero. If x0 is bigger than x1 the new image is

mirrored. The same holds for the y coordinates.

scale(image, psize, width, height, newwidth, newheight)

This function returns a image scaled to size newwidth by newheight. No interpolation

is done, scaling is done by simple-minded pixel duplication or removal. Therefore,

computer-generated images or dithered images will not look nice after scaling.

tovideo(image, psize, width, height)

This function runs a vertical low-pass �lter over an image. It does so by computing

each destination pixel as the average of two vertically-aligned source pixels. The main

use of this routine is to forestall excessive icker if the image is displayed on a video

device that uses interlacing, hence the name.

grey2mono(image, width, height, threshold)

This function converts a 8-bit deep greyscale image to a 1-bit deep image by tresholding

all the pixels. The resulting image is tightly packed and is probably only useful as an

argument to mono2grey.

78

dither2mono(image, width, height)

This function also converts an 8-bit greyscale image to a 1-bit monochrome image but

it uses a (simple-minded) dithering algorithm.

mono2grey(image, width, height, p0, p1)

This function converts a 1-bit monochrome image to an 8 bit greyscale or color image.

All pixels that are zero-valued on input get value p0 on output and all one-value input

pixels get value p1 on output. To convert a monochrome black-and-white image to

greyscale pass the values 0 and 255 respectively.

grey2grey4(image, width, height)

Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2(image, width, height)

Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2(image, width, height)

Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As for

dither2mono, the dithering algorithm is currently very simple.

grey42grey(image, width, height)

Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey(image, width, height)

Convert a 2-bit greyscale image to an 8-bit greyscale image.

79

Chapter 11

SUN SPARC MACHINES ONLY

11.1 Built-in module sunaudiodev

This module allows you to access the sun audio interface. The sun audio hardware is capable

of recording and playing back audio data in U-LAW format with a sample rate of 8K per

second. A full description can be gotten with `man audio'.

The module de�nes the following variables and functions:

error

This exception is raised on all errors. The argument is a string describing what went

wrong.

open(mode)

This function opens the audio device and returns a sun audio device object. This object

can then be used to do I/O on. The mode parameter is one of 'r' for record-only access,

'w' for play-only access, 'rw' for both and 'control' for access to the control device.

Since only one process is allowed to have the recorder or player open at the same time

it is a good idea to open the device only for the activity needed. See the audio manpage

for details.

11.1.1 Audio device object methods

The audio device objects are returned by open de�ne the following methods (except control

objects which only provide getinfo, setinfo and drain):

close()

This method explicitly closes the device. It is useful in situations where deleting the

object does not immediately close it since there are other references to it. A closed

device should not be used again.

drain()

This method waits until all pending output is processed and then returns. Calling this

method is often not necessary: destroying the object will automatically close the audio

device and this will do an implicit drain.

80

flush()

This method discards all pending output. It can be used avoid the slow response to a

user's stop request (due to bu�ering of up to one second of sound).

getinfo()

This method retrieves status information like input and output volume, etc. and re-

turns it in the form of an audio status object. This object has no methods but it

contains a number of attributes describing the current device status. The names and

meanings of the attributes are described in `/usr/include/sun/audioio.h' and in the

audio man page. Member names are slightly di�erent from their C counterparts: a

status object is only a single structure. Members of the play substructure have `o_'

prepended to their name and members of the record structure have `i_'. So, the C

member play.sample_rate is accessed as o_sample_rate, record.gain as i_gain and

monitor_gain plainly as monitor_gain.

ibufcount()

This method returns the number of samples that are bu�ered on the recording side, i.e.

the program will not block on a read call of so many samples.

obufcount()

This method returns the number of samples bu�ered on the playback side. Unfortu-

nately, this number cannot be used to determine a number of samples that can be

written without blocking since the kernel output queue length seems to be variable.

read(size)

This method reads size samples from the audio input and returns them as a python

string. The function blocks until enough data is available.

setinfo(status)

This method sets the audio device status parameters. The status parameter is an device

status object as returned by getinfo and possibly modi�ed by the program.

write(samples)

Write is passed a python string containing audio samples to be played. If there is enough

bu�er space free it will immedeately return, otherwise it will block.

There is a companion module, SUNAUDIODEV, which de�nes useful symbolic constants like

MIN_GAIN, MAX_GAIN, SPEAKER, etc. The names of the constants are the same names as used

in the C include �le `<sun/audioio.h>', with the leading string `AUDIO_' stripped.

Useability of the control device is limited at the moment, since there is no way to use the

'wait for something to happen' feature the device provides. This is because that feature makes

heavy use of signals, and these do not map too well onto Python.

81

Chapter 12

AUDIO TOOLS

12.1 Built-in module audioop

The audioop module contains some useful operations on sound fragments. It operates on

sound fragments consisting of signed integer samples of 8, 16 or 32 bits wide, stored in

Python strings. This is the same format as used by the al and sunaudiodev modules. All

scalar items are integers, unless speci�ed otherwise.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size

(in bytes) is always a parameter of the operation.

The module de�nes the following variables and functions:

error

This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add(fragment1, fragment2, width)

This function returns a fragment that is the addition of the two samples passed as

parameters. width is the sample width in bytes, either 1, 2 or 4. Both fragments should

have the same length.

adpcm2lin(adpcmfragment, width, state)

This routine decodes an Intel/DVI ADPCM coded fragment to a linear fragment. See

the description of lin2adpcm for details on ADPCM coding. The routine returns a

tuple (sample, newstate) where the sample has the width speci�ed in width .

adpcm32lin(adpcmfragment, width, state)

This routine decodes an alternative 3-bit ADPCM code. See lin2adpcm3 for details.

avg(fragment, width)

This function returns the average over all samples in the fragment.

avgpp(fragment, width)

This function returns the average peak-peak value over all samples in the fragment. No

�ltering is done, so the useability of this routine is questionable.

bias(fragment, width, bias)

This function returns a fragment that is the original fragment with a bias added to each

82

sample.

cross(fragment, width)

This function returns the number of zero crossings in the fragment passed as an argu-

ment.

findfactor(fragment, reference)

This routine (which only accepts 2-byte sample fragments) calculates a factor F such

that rms(add(fragment, mul(reference, -F))) is minimal, i.e. it calculates the fac-

tor with which you should multiply reference to make it match as good as possible to

fragment . The fragments should be the same size. The time taken by this routine is

proportional to len(fragment).

findfit(fragment, reference)

This routine (which only accepts 2-byte sample fragments) tries to match reference as

good as possible to a portion of fragment (which should be the longer fragment). It

(conceptually) does this by taking slices out of fragment , using findfactor to compute

the best match, and minimizing the result. It returns a tuple (o�set, factor) with

o�set the (integer) o�set into fragment where the optimal match started and factor the

oating-point factor as per �ndfactor.

getsample(fragment, width, index)

This function returns the value of sample index from the fragment.

The time taken by this routine is proportional to len(fragment)*len(reference).

findmax(fragment, length)

This routine (which only accepts 2-byte sample fragments) searches fragment for a slice

of length length samples (not bytes!) with maximum energy, i.e. it returns i for which

rms(fragment[i*2:(i+length)*2]) is maximal.

The routine takes time proportional to len(fragment).

lin2lin(fragment, width, newwidth)

This function converts samples between 1-, 2- and 4-byte formats.

lin2adpcm(fragment, width, state)

This function converts samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding

is an adaptive coding scheme, whereby each 4 bit number is the di�erence between one

sample and the next, divided by a (varying) step. The Intel/DVI ADPCM algorythm

has been selected for use by the IMA, so may well become a standard.

State is a tuple containing the state of the coder. The coder returns a tu-

ple (adpcmfrag, newstate), and the newstate should be passed to the next call of

lin2adpcm. In the initial call None can be passed as the state. adpcmfrag is the AD-

PCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3(fragment, width, state)

This is an alternative ADPCM coder that uses only 3 bits per sample. It is not com-

patible with the Intel/DVI ADPCM coder and its output is not packed (due to laziness

on the side of the author). Its use is discouraged.

lin2ulaw(fragment, width)

This function converts samples in the audio fragment to U-LAW encoding and returns

83

this as a python string. U-LAW is an audio encoding format whereby you get a dynamic

range of about 14 bits using only 8 bit samples. It is used by the Sun audio hardware,

among others.

max(fragment, width)

Max returns the maximum of the absolute value of all samples in a fragment.

maxpp(fragment, width)

This function returns the maximum peak-peak value in the sound fragment.

mul(fragment, width, factor)

Mul returns a fragment that has all samples in the original framgent multiplied by the

oating-point value factor . Overow is silently ignored.

reverse(fragment, width)

This function reverses the samples in a fragment and returns the modi�ed fragment.

tomono(fragment, width, lfactor, rfactor)

This function converts a stereo fragment to a mono fragment. The left channel is

multiplied by lfactor and the right channel by rfactor before adding the two channels

to give a mono signal.

tostereo(fragment, width, lfactor, rfactor)

This function generates a stereo fragment from a mono fragment. Each pair of samples in

the stereo fragment are computed from the mono sample, whereby left channel samples

are multiplied by lfactor and right channel samples by rfactor .

mul(fragment, width, factor)

Mul returns a fragment that has all samples in the original framgent multiplied by the

oating-point value factor . Overow is silently ignored.

rms(fragment, width, factor)

Returns the root-mean-square of the fragment, i.e.

s

P

S

i

2

n

This is a measure of the power in an audio signal.

ulaw2lin(fragment, width)

This function converts sound fragments in ULAW encoding to linearly encoded sound

fragments. ULAW encoding always uses 8 bits samples, so width refers only to the

sample width of the output fragment here.

Note that operations such as mul or max make no distinction between mono and stereo frag-

ments, i.e. all samples are treated equal. If this is a problem the stereo fragment should be

split into two mono fragments �rst and recombined later. Here is an example of how to do

that:

84

def mul_stereo(sample, width, lfactor, rfactor):

lsample = audioop.tomono(sample, width, 1, 0)

rsample = audioop.tomono(sample, width, 0, 1)

lsample = audioop.mul(sample, width, lfactor)

rsample = audioop.mul(sample, width, rfactor)

lsample = audioop.tostereo(lsample, width, 1, 0)

rsample = audioop.tostereo(rsample, width, 0, 1)

return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be

stateless (i.e. to be able to tolerate packet loss) you should not only transmit the data but

also the state. Note that you should send the initial state (the one you passed to lin2adpcm)

along to the decoder, not the �nal state (as returned by the coder). If you want to use struct

to store the state in binary you can code the �rst element (the predicted value) in 16 bits and

the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against them-

selves. It could well be that I misinterpreted the standards in which case they will not be

interoperable with the respective standards.

The find... routines might look a bit funny at �rst sight. They are primarily meant for

doing echo cancellation. A reasonably fast way to do this is to pick the most energetic piece

of the output sample, locate that in the input sample and subtract the whole output sample

from the input sample:

def echocancel(outputdata, inputdata):

pos = audioop.findmax(outputdata, 800) # one tenth second

out_test = outputdata[pos*2:]

in_test = inputdata[pos*2:]

ipos, factor = audioop.findfit(in_test, out_test)

Optional (for better cancellation):

factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],

out_test)

prefill = '\0'*(pos+ipos)*2

postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))

outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill

return audioop.add(inputdata, outputdata, 2)

85

Chapter 13

CRYPTOGRAPHIC

EXTENSIONS

The modules described in this chapter support cryptographic algorithms such as RSA. They

are only available when explicitly con�gured (requiring the GNU MP library).

13.1 Built-in module mpz

This module implements the interface to part of the GNU MP library. This library contains

arbitrary precision integer and rational number arithmetic routines. Only the interfaces to

the integer (`mpz_: : : ') routines are provided. If not stated otherwise, the description in the

GNU MP documentation can be applied.

In general, mpz-numbers can be used just like other standard Python numbers, e.g. you can

use the built-in operators like +, *, etc., as well as the standard built-in functions like abs,

int, : : : , divmod, pow. Please note: the bitwise-xor operation has been implemented as a

bunch of ands, inverts and ors, because the library lacks an mpz_xor function, and I didn't

need one.

You create an mpz-number, by calling the function called mpz (see below for an excact de-

scription). An mpz-number is printed like this: mpz(value).

mpz(value)

Create a new mpz-number. value can be an integer, a long, another mpz-number, or

even a string. If it is a string, it is interpreted as an array of radix-256 digits, least

signi�cant digit �rst, resulting in a positive number. See also the binary method,

described below.

A number of extra functions are de�ned in this module. Non mpz-arguments are converted

to mpz-values �rst, and the functions return mpz-numbers.

powm(base, exponent, modulus)

Return pow(base, exponent) % modulus . If exponent == 0, return mpz(1). In con-

trast to the C-library function, this version can handle negative exponents.

86

gcd(op1, op2)

Return the greatest common divisor of op1 and op2 .

gcdext(a, b)

Return a tuple (g, s, t), such that a*s + b*t == g == gcd(a, b).

sqrt(op)

Return the square root of op. The result is rounded towards zero.

sqrtrem(op)

Return a tuple (root, remainder), such that root*root + remainder == op.

divm(numerator, denominator, modulus)

Returns a number q . such that q * denominator % modulus == numerator . One

could also implement this function in python, using gcdext.

An mpz-number has one method:

binary()

Convert this mpz-number to a binary string, where the number has been stored as an

array of radix-256 digits, least signi�cant digit �rst.

The mpz-number must have a value greater than- or equal to zero, otherwise a

ValueError-exception will be raised.

13.2 Built-in module md5

This module implements the interface to RSA's MD5 message digest algorithm (see also the

�le `md5.doc'). It's use is very straightforward: use the function md5 to create an md5-object.

You can now \feed" this object with arbitrary strings.

At any time you can ask the \�nal" digest of the object. Internally, a temorary copy of the

object is made and the digest is computed and returned. Because of the copy, the digest

operation is not desctructive for the object. Before a more exact description of the use, a

small example: to obtain the digest of the string 'abc', use : : :

>>> from md5 import md5

>>> m = md5()

>>> m.update('abc')

>>> m.digest()

'\220\001P\230<\322O\260\326\226?}(\341\177r'

More condensed:

>>> md5('abc').digest()

'\220\001P\230<\322O\260\326\226?}(\341\177r'

md5(arg)

Create a new md5-object. arg is optional: if present, an initial update method is called

87

with arg as argument.

An md5-object has the following methods:

update(arg)

Update this md5-object with the string arg .

digest()

Return the digest of this md5-object. Internally, a copy is made and the C-function

MD5Final is called. Finally the digest is returned.

copy()

Return a separate copy of this md5-object. An update to this copy won't a�ect the

original object.

88

Index

==

operator, 3

__main__ (built-in module), 20

_exit (in module posix), 34

abc

language, 3

abs (built-in function), 12

accept (socket method), 41

acquire (lock method), 45

activate_form (form object method), 72

add (in module audio), 65

add (in module audioop), 82

add_box (form object method), 72

add_browser (form object method), 73

add_button (form object method), 72

add_choice (form object method), 73

add_clock (form object method), 72

add_counter (form object method), 73

add_dial (form object method), 73

add_input (form object method), 73

add_lightbutton (form object method),

72

add_menu (form object method), 73

add_positioner (form object method), 73

add_roundbutton (form object method),

72

add_slider (form object method), 72

add_text (form object method), 72

add_timer (form object method), 73

add_valslider (form object method), 72

additem (menu method), 57

adpcm2lin (in module audioop), 82

adpcm32lin (in module audioop), 82

AF_INET (in module socket), 40

AF_UNIX (in module socket), 40

AL (standard module), 64

al (built-in module), 62

allocate_lock (in module thread), 45

altzone (in module time), 21

amoeba (built-in module), 47

amplify (in module audio), 65

and

operator, 3

append (in module array), 27

append (list method), 6

apply (built-in function), 12

argv (in module sys), 18

arithmetic, 4

array (built-in module), 26

array (in module array), 26

arrays, 26

arrow (text-edit method), 58

asctime (in module time), 21

askfile (in module stdwin), 52

askstr (in module stdwin), 52

askync (in module stdwin), 52

assignment

slice, 6

subscript, 6

atoi (in module string), 29

atoi_error (exception in module string),

29

AttributeError (built-in exception), 10

audio (built-in module), 64

audioop (built-in module), 82

avail (socket method), 41

avg (in module audioop), 82

avgpp (in module audioop), 82

b_read (capability method), 48

b_size (capability method), 48

baseline (drawing method), 56

baseline (in module stdwin), 53

basename (in module posixpath), 36

begindrawing (window method), 54

bgn_group (form object method), 72

bias (in module audioop), 82

89

binary (mpz method), 87

bind (socket method), 41

bit-string

operations, 5

bitmap (drawing method), 57

Boolean

operations, 2, 3

type, 2

box (drawing method), 55

built-in

exceptions, 1, 2

functions, 1, 2

modules, 1

types, 1, 2

builtin_module_names (in module sys),

18

C

structures, 25

calcsize (in module struct), 25

capv (in module amoeba), 47

casefold (in module regex), 23

center (in module string), 30

change (window method), 54

chdir (in module posix), 33

check (menu method), 57

check_forms (in module), 70

chmod (in module posix), 33

choice (in module rand), 30

chr (built-in function), 13

chr2num (in module audio), 65

circle (drawing method), 55

cliprect (drawing method), 57

close (audio device method), 80

close (bitmap method), 58

close (drawing method), 57

close (�le method), 9

close (in module posix), 33

close (menu method), 57

close (socket method), 41

close (text-edit method), 59

close (window method), 55

closeport (audio port object method), 63

cmp (built-in function), 13

coerce (built-in function), 13

color (in module), 71

commonprefix (in module posixpath), 36

comparing

objects, 3

comparison

operator, 3

compile (built-in function), 13

compile (in module regex), 22

compress (in module jpeg), 77

concatenation

operation, 5

connect (socket method), 42

connectionnumber (in module stdwin), 53

conversions

numeric, 4

copy (md5 method), 88

count (list method), 6

crop (in module imageop), 78

cross (in module audioop), 83

ctime (in module time), 21

curdir (in module os), 31

C

language, 1, 3, 4

daylight (in module time), 21

dbm (built-in module), 44

deactivate_form (form object method),

72

decompress (in module jpeg), 77

defpanellist (in module panel), 76

del

statement, 6, 7

delete_object (FORMS object method),

74

DEVICE (standard module), 69

dictionary

type, 7

type, operations on, 7

digest (md5 method), 88

digits (data in module string), 28

dir (built-in function), 13

dir_append (capability method), 48

dir_delete (capability method), 48

dir_list (capability method), 48

dir_lookup (capability method), 48

dir_replace (capability method), 48

dither2grey2 (in module imageop), 79

dither2mono (in module imageop), 79

division

90

integer, 4

long integer, 4

divm (in module mpz), 87

divmod (built-in function), 13

do_forms (in module), 70

drain (audio device method), 80

draw (text-edit method), 58

dump (in module marshal), 24

dumps (in module marshal), 25

dup (in module posix), 33

dup2 (in module posix), 34

elarc (drawing method), 55

empty (in module rect), 60

enable (menu method), 57

end_group (form object method), 72

enddrawing (drawing method), 57

endpick (in module gl), 67

endselect (in module gl), 67

enumerate (in module fm), 68

environ (data in module posix), 33

EOFError (built-in exception), 10

erase (drawing method), 56

error (exception in module posix), 33

error (in module amoeba), 47

error (in module audioop), 82

error (in module dbm), 45

error (in module imageop), 78

error (in module img�le), 77

error (in module rect), 60

error (in module regex), 23

error (in module select), 44

error (in module socket), 40

error (in module struct), 25

error (in module sunaudiodev), 80

error (in module thread), 45

eval (built-in function), 13

event (text-edit method), 58

exc_traceback (in module sys), 18

exc_type (in module sys), 18

exc_value (in module sys), 18

exceptions

built-in, 1, 2

exec (built-in function), 14

exec (in module posix), 34

execfile (built-in function), 14

exists (in module posixpath), 37

exit (in module sys), 18

exit_prog (in module thread), 45

exit_thread (in module thread), 45

exitfunc (in module sys), 19

expandtabs (in module string), 29

expanduser (in module posixpath), 37

false, 2

fetchcolor (in module stdwin), 51

fileno (in module stdwin), 53

fileno (socket method), 42

fillcircle (drawing method), 56

fillelarc (drawing method), 56

fillpoly (drawing method), 56

find (in module string), 29

find_first (form object method), 72

find_last (form object method), 72

findfactor (in module audioop), 83

findfit (in module audioop), 83

findfont (in module fm), 68

findmax (in module audioop), 83

FL (standard module), 75

fl (built-in module), 69

fleep (in module stdwin), 52

float (built-in function), 4, 14

oating point

literals, 4

type, 4

flp (standard module), 75

flush (audio device method), 81

flush (�le method), 9

fm (built-in module), 68

fontpath (in module fm), 69

fork (in module posix), 34

freeze_form (form object method), 72

freeze_object (FORMS object method),

74

fromfd (in module socket), 41

fromlist (in module array), 27

fromstring (in module array), 27

fstat (in module posix), 34

functions

built-in, 1, 2

gcd (in module mpz), 87

gcdext (in module mpz), 87

geom2rect (in module rect), 61

91

get_directory (in module), 71

get_filename (in module), 71

get_mouse (in module), 71

get_pattern (in module), 71

get_rgbmode (in module), 70

getactive (in module stdwin), 51

getattr (built-in function), 14

getbgcolor (drawing method), 56

getbgcolor (in module stdwin), 52

getbit (bitmap method), 58

getchannels (audio con�guration object

method), 63

getcomment (font handle method), 69

getconfig (audio port object method), 64

getcutbuffer (in module stdwin), 53

getcwd (in module posix), 34

getdefscrollbars (in module stdwin), 51

getdefwinpos (in module stdwin), 51

getdefwinsize (in module stdwin), 51

getdocsize (window method), 54

getegid (in module posix), 34

geteuid (in module posix), 34

getevent (in module stdwin), 50

getfd (audio port object method), 63

getfgcolor (drawing method), 56

getfgcolor (in module stdwin), 52

getfillable (audio port object method),

63

getfilled (audio port object method), 63

getfillpoint (audio port object method),

64

getfloatmax (audio con�guration object

method), 63

getfocus (text-edit method), 58

getfocustext (text-edit method), 58

getfontinfo (font handle method), 69

getfontname (font handle method), 69

getgid (in module posix), 34

getgrall (in module grp), 40

getgrgid (in module grp), 39

getgrnam (in module grp), 40

gethostbyname (in module socket), 41

getinfo (audio device method), 81

getmcolor (in module), 71

getopt (standard module), 38

getorigin (window method), 54

getoutgain (in module audio), 64

getparams (in module al), 62

getpeername (socket method), 42

getpid (in module posix), 34

getppid (in module posix), 34

getpwall (in module pwd), 39

getpwnam (in module pwd), 39

getpwuid (in module pwd), 39

getqueuesize (audio con�guration object

method), 63

getrect (text-edit method), 58

getsampfmt (audio con�guration object

method), 63

getsample (in module audioop), 83

getscrmm (in module stdwin), 51

getscrsize (in module stdwin), 51

getselection (in module stdwin), 53

getservbyname (in module socket), 41

getsize (bitmap method), 58

getsizes (in module img�le), 77

getsockname (socket method), 42

getsockopt (socket method), 42

getstatus (audio port object method), 64

getstrwidth (font handle method), 69

gettext (text-edit method), 58

gettitle (window method), 54

getuid (in module posix), 34

getwidth (audio con�guration object

method), 63

getwinpos (window method), 54

getwinsize (window method), 54

GL (standard module), 69

gl (built-in module), 66

gmtime (in module time), 21

grey22grey (in module imageop), 79

grey2grey2 (in module imageop), 79

grey2grey4 (in module imageop), 79

grey2mono (in module imageop), 78

grey42grey (in module imageop), 79

group (regex method), 23

grp (built-in module), 39

gsub (in module regsub), 31

has_key (dictionary method), 7

hasattr (built-in function), 14

hash (built-in function), 14

hex (built-in function), 14

hexadecimal

92

literals, 4

hexdigits (data in module string), 28

hide_form (form object method), 71

hide_object (FORMS object method), 74

ibufcount (audio device method), 81

id (built-in function), 14

if

statement, 2

imageop (built-in module), 78

imgfile (built-in module), 77

ImportError (built-in exception), 11

in

operator, 3, 5

index (in module string), 29

index (list method), 6

index_error (exception in module string),

29

IndexError (built-in exception), 11

init (in module fm), 68

input (built-in function), 15

insert (in module array), 27

insert (list method), 6

inset (in module rect), 60

int (built-in function), 4, 15

integer

division, 4

division, long, 4

literals, 4

literals, long, 4

type, 4

type, long, 4

types, 4

types, operations on, 5

intersect (in module rect), 60

invert (drawing method), 56

IOError (built-in exception), 10

is

operator, 3

is not

operator, 3

is_empty (in module rect), 60

isabs (in module posixpath), 37

isatty (�le method), 9

isdir (in module posixpath), 37

isfile (in module posixpath), 37

islink (in module posixpath), 37

ismount (in module posixpath), 37

isqueued (in module), 71

itemsize (in module array), 27

join (in module posixpath), 37

join (in module string), 29

joinfields (in module string), 29

jpeg (built-in module), 76

KeyboardInterrupt (built-in exception),

11

KeyError (built-in exception), 11

keys (dictionary method), 7

kill (in module posix), 34

language

abc, 3

C, 1, 3, 4

last (regex attribute), 24

last_traceback (in module sys), 19

last_type (in module sys), 19

last_value (in module sys), 19

len (built-in function), 5, 7, 15

letters (data in module string), 28

lin2adpcm (in module audioop), 83

lin2adpcm3 (in module audioop), 83

lin2lin (in module audioop), 83

lin2ulaw (in module audioop), 83

line (drawing method), 56

lineheight (drawing method), 56

lineheight (in module stdwin), 53

link (in module posix), 34

list

type, 5, 6

type, operations on, 6

listdir (in module posix), 34

listen (socket method), 42

listfontnames (in module stdwin), 51

literals

oating point, 4

hexadecimal, 4

integer, 4

long integer, 4

numeric, 4

octal, 4

ljust (in module string), 30

load (in module marshal), 24

loads (in module marshal), 25

93

localtime (in module time), 21

locked (lock method), 46

long

integer division, 4

integer literals, 4

integer type, 4

long (built-in function), 4, 15

lower (in module string), 29

lowercase (data in module string), 28

lseek (in module posix), 34

lstat (in module posix), 35

mac (built-in module), 49

macpath (standard module), 49

make_form (in module), 70

makefile (socket method), 42

mapcolor (in module), 71

mapping

types, 7

types, operations on, 7

marshal (built-in module), 24

masking

operations, 5

match (in module regex), 22

match (regex method), 23

math , 4

math (built-in module), 20

max (built-in function), 5, 15

max (in module audioop), 84

maxpp (in module audioop), 84

md5 (built-in module), 87

md5 (in module md5), 87

MemoryError (built-in exception), 11

menucreate (in module stdwin), 52

menucreate (window method), 54

message (in module stdwin), 52

millisleep (in module time), 21

millitimer (in module time), 21

min (built-in function), 5, 15

mkdir (in module posix), 35

mktime (in module time), 21

modules

built-in, 1

standard, 1

modules (in module sys), 19

mono2grey (in module imageop), 79

move (text-edit method), 58

mpz (built-in module), 86

mpz (in module mpz), 86

mul (in module audioop), 84

mutable

sequence types, 6

sequence types, operations on, 6

name (in module os), 31

name_append (in module amoeba), 47

name_delete (in module amoeba), 47

name_lookup (in module amoeba), 47

name_replace (in module amoeba), 47

NameError (built-in exception), 11

newbitmap (in module stdwin), 52

newconfig (in module al), 62

nice (in module posix), 35

noclip (drawing method), 57

None (Built-in object), 2

normcase (in module posixpath), 37

not

operator, 3

not in

operator, 3, 5

num2chr (in module audio), 65

numeric

conversions, 4

literals, 4

types, 3, 4

types, operations on, 4

nurbscurve (in module gl), 67

nurbssurface (in module gl), 67

nvarray (in module gl), 67

objects

comparing, 3

obufcount (audio device method), 81

oct (built-in function), 15

octal

literals, 4

octdigits (data in module string), 28

open (built-in function), 15

open (in module dbm), 45

open (in module posix), 35

open (in module stdwin), 50

open (in module sunaudiodev), 80

openport (in module al), 62

operation

94

concatenation, 5

repetition, 5

slice, 5

subscript, 5

operations

bit-string, 5

Boolean, 2, 3

masking, 5

shifting, 5

operations on

dictionary type, 7

integer types, 5

list type, 6

mapping types, 7

mutable sequence types, 6

numeric types, 4

sequence types, 5, 6

operator

==, 3

and, 3

comparison, 3

in, 3, 5

is, 3

is not, 3

not, 3

not in, 3, 5

or, 3

or

operator, 3

ord (built-in function), 15

os (standard module), 31

OverflowError (built-in exception), 11

pack (in module struct), 25

paint (drawing method), 56

panel (standard module), 76

panelparser (standard module), 76

pardir (in module os), 32

path (in module os), 31

path (in module sys), 19

pdb (in module sys), 19

pick (in module gl), 67

pipe (in module posix), 35

pnl (built-in module), 76

pointinrect (in module rect), 60

poll_playing (in module audio), 65

poll_recording (in module audio), 65

pollevent (in module stdwin), 50

poly (drawing method), 56

popen (in module posix), 35

posix (built-in module), 33

posixpath (standard module), 36

pow (built-in function), 15

powm (in module mpz), 86

print

statement, 2

pro�le function, 19

prstr (in module fm), 68

ps1 (in module sys), 19

ps2 (in module sys), 19

pwd (built-in module), 39

pwlcurve (in module gl), 67

qdevice (in module), 71

qenter (in module), 71

qread (in module), 71

qreset (in module), 71

qtest (in module), 71

queryparams (in module al), 62

rand (in module rand), 30

rand (standard module), 30

random (in module whrandom), 30

range (built-in function), 15

raw_input (built-in function), 16

read (audio device method), 81

read (�le method), 9

read (in module array), 27

read (in module audio), 65

read (in module img�le), 77

read (in module posix), 35

readline (�le method), 9

readlines (�le method), 9

readlink (in module posix), 35

readsamps (audio port object method), 63

readscaled (in module img�le), 77

rect (standard module), 60

rect2geom (in module rect), 61

recv (socket method), 42

recvfrom (socket method), 42

redraw_form (form object method), 71

redraw_object (FORMS object method),

74

regex, 6

95

regex (built-in module), 22

regs (regex attribute), 24

regsub (standard module), 30

release (lock method), 46

reload (built-in function), 16

remove (list method), 6

rename (in module posix), 35

repetition

operation, 5

replace (text-edit method), 58

repr (built-in function), 16

resetselection (in module stdwin), 53

reverse (in module audio), 65

reverse (in module audioop), 84

reverse (list method), 6

rjust (in module string), 30

rmdir (in module posix), 35

rms (in module audioop), 84

rotatecutbuffers (in module stdwin), 53

round (built-in function), 16

RuntimeError (built-in exception), 11

samefile (in module posixpath), 37

scale (in module imageop), 78

scalefont (font handle method), 69

scroll (window method), 54

search (in module regex), 22

search (regex method), 23

seed (in module whrandom), 30

seek (�le method), 9

select (built-in module), 44

select (in module gl), 67

select (in module select), 44

select (in module stdwin), 53

send (socket method), 42

sendto (socket method), 42

sep (in module os), 32

sequence

types, 5

types, mutable, 6

types, operations on, 5, 6

types, operations on mutable, 6

set_call_back (FORMS object method),

74

set_event_call_back (in module), 70

set_form_position (form object

method), 72

set_graphics_mode (in module), 70

set_syntax (in module regex), 23

setactive (window method), 55

setattr (built-in function), 17

setbgcolor (drawing method), 56

setbgcolor (in module stdwin), 52

setbit (bitmap method), 58

setchannels (audio con�guration object

method), 63

setconfig (audio port object method), 64

setcutbuffer (in module stdwin), 52

setdefscrollbars (in module stdwin), 51

setdefwinpos (in module stdwin), 51

setdefwinsize (in module stdwin), 51

setdocsize (window method), 54

setduration (in module audio), 65

setfgcolor (drawing method), 56

setfgcolor (in module stdwin), 51

setfillpoint (audio port object method),

64

setfloatmax (audio con�guration object

method), 63

setfocus (text-edit method), 58

setfont (drawing method), 56

setfont (font handle method), 69

setfont (in module stdwin), 52

setinfo (audio device method), 81

setitem (menu method), 57

setoption (in module jpeg), 77

setorigin (window method), 54

setoutgain (in module audio), 64

setparams (in module al), 63

setpath (in module fm), 68

setprofile (in module sys), 19

setqueuesize (audio con�guration object

method), 63

setrate (in module audio), 64

setsampfmt (audio con�guration object

method), 63

setselection (window method), 54

setsockopt (socket method), 42

settext (text-edit method), 59

settimer (window method), 54

settitle (window method), 55

settrace (in module sys), 19

setview (text-edit method), 59

setwincursor (window method), 55

96

setwinpos (window method), 55

setwinsize (window method), 55

shade (drawing method), 56

shifting

operations, 5

show (window method), 55

show_choice (in module), 70

show_file_selector (in module), 71

show_form (form object method), 71

show_input (in module), 70

show_message (in module), 70

show_object (FORMS object method), 74

show_question (in module), 70

shutdown (socket method), 43

sleep (in module time), 21

slice

assignment, 6

operation, 5

SOCK_DGRAM (in module socket), 41

SOCK_STREAM (in module socket), 41

socket (built-in module), 40

socket (in module select), 44

socket (in module socket), 41

sort (list method), 6

split (in module posixpath), 37

split (in module regsub), 31

split (in module string), 29

splitext (in module posixpath), 37

splitfields (in module string), 29

sqrt (in module mpz), 87

sqrtrem (in module mpz), 87

srand (in module rand), 30

standard

modules, 1

start_new_thread (in module thread), 45

start_playing (in module audio), 65

start_recording (in module audio), 65

stat (in module posix), 35

statement

del, 6, 7

if, 2

print, 2

while, 2

std_info (capability method), 48

stderr (in module sys), 19

stdin (in module sys), 19

stdout (in module sys), 19

stdwin (built-in module), 50

stdwin (in module select), 44

stdwinevents (standard module), 59

stop_playing (in module audio), 65

stop_recording (in module audio), 65

str (built-in function), 17

string, 6

type, 5

string (standard module), 28

strip (in module string), 29

struct (built-in module), 25

structures

C, 25

sub (in module regsub), 31

subscript

assignment, 6

operation, 5

sunaudiodev (built-in module), 80

swapcase (in module string), 29

symbol table, 2

symlink (in module posix), 35

SyntaxError (built-in exception), 11

sys (built-in module), 18

system (in module posix), 35

SystemError (built-in exception), 11

SystemExit (built-in exception), 12

tell (�le method), 9

text (drawing method), 56

textbreak (drawing method), 56

textbreak (in module stdwin), 53

textcreate (window method), 55

textwidth (drawing method), 56

textwidth (in module stdwin), 53

thread (built-in module), 45

tie (in module), 71

time (built-in module), 20

time (in module time), 21

timeout (in module amoeba), 47

times (in module posix), 36

timezone (in module time), 22

tod_gettime (capability method), 48

tod_settime (capability method), 48

tolist (in module array), 27

tomono (in module audioop), 84

tostereo (in module audioop), 84

tostring (in module array), 27

97

tovideo (in module imageop), 78

trace function, 19

translate (regex attribute), 24

true, 3

truth

value, 2

tuple

type, 5

type

Boolean, 2

dictionary, 7

oating point, 4

integer, 4

list, 5, 6

long integer, 4

operations on dictionary, 7

operations on list, 6

string, 5

tuple, 5

type (built-in function), 2, 17

typecode (in module array), 26

TypeError (built-in exception), 12

types

built-in, 1

integer, 4

mapping, 7

mutable sequence, 6

numeric, 3, 4

operations on integer, 5

operations on mapping, 7

operations on mutable sequence, 6

operations on numeric, 4

operations on sequence, 5, 6

sequence, 5

tzname (in module time), 22

ulaw2lin (in module audioop), 84

umask (in module posix), 36

uname (in module posix), 36

unfreeze_form (form object method), 72

unfreeze_object (FORMS object

method), 74

union (in module rect), 60

unlink (in module posix), 36

unpack (in module struct), 25

unqdevice (in module), 71

update (md5 method), 88

upper (in module string), 29

uppercase (data in module string), 28

utime (in module posix), 36

value

truth, 2

ValueError (built-in exception), 12

varray (in module gl), 67

vnarray (in module gl), 67

wait (in module posix), 36

wait_playing (in module audio), 65

wait_recording (in module audio), 65

waitpid (in module posix), 36

walk (in module posixpath), 38

wdb (in module sys), 19

while

statement, 2

whitespace (data in module string), 28

whrandom (standard module), 30

write (audio device method), 81

write (�le method), 9

write (in module array), 27

write (in module audio), 65

write (in module img�le), 78

write (in module posix), 36

writesamps (audio port object method),

64

xorcircle (drawing method), 56

xorelarc (drawing method), 56

xorline (drawing method), 56

xorpoly (drawing method), 56

ZeroDivisionError (built-in exception),

12

zfill (in module string), 30

98

